[en] Aiming to develop efficient blue-emitting thermally activated delayed fluorescence (TADF) compounds, we have designed and synthesized derivatives of the well-known sky-blue emitter 2CzPN that contain electron-accepting phosphine chalcogenide groups to stabilize the HOMO level relative to the pristine compound, thus increasing the HOMO-LUMO gap and blue-shifting the emission wavelength. By cyclic voltammetry, photophysical data and quantum-chemical calculations, it was found that polar solvents and matrices validated the proposed concept, but these trends were not recovered in non-polar media. The suitability of these 2CzPN derivatives in polar matrices for optoelectronic applications was explored with electrochemiluminescence (ECL) by measuring emission delays, radical stability, emission stabilities, emission efficiencies and emission spectra. Some of the 2CzPN derivatives showed an unprecedented delayed onset of the ECL, and delayed rising time to the ECL maximum, as well as long ECL emission decay. All of these mentioned delay times suggest that these luminophores primarily emit via organic long-persistent electrochemiluminescence (OLECL) mechanisms. The derivatization of the donor groups of the emitters affected both the radical stability and the predominant emission mechanism, providing important insight into their potential as emitters in solid-state electroluminescent devices.
Disciplines :
Chemistry
Author, co-author :
Kumar, Shiv; Organic Semiconductor Centre, University of St Andrews, EaStCHEM School of Chemistry, St Andrews, United Kingdom
Tourneur, Pauline; Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
Adsetts, Jonathan R.; Department of Chemistry, The University of Western Ontario, London, Canada
Wong, Michael Y. ; Organic Semiconductor Centre, University of St Andrews, EaStCHEM School of Chemistry, St Andrews, United Kingdom
Rajamalli, Pachaiyappan ; Organic Semiconductor Centre, University of St Andrews, EaStCHEM School of Chemistry, St Andrews, United Kingdom
Chen, Dongyang; Organic Semiconductor Centre, University of St Andrews, EaStCHEM School of Chemistry, St Andrews, United Kingdom
Lazzaroni, Roberto ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux ; Materia Nova, Materials R&D center, Mons, Belgium
Viville, Pascal ; Université de Mons - UMONS > Unités externes > Materia Nova ASBL ; Materia Nova, Materials R&D center, Mons, Belgium
Cordes, David B. ; Organic Semiconductor Centre, University of St Andrews, EaStCHEM School of Chemistry, St Andrews, United Kingdom
Slawin, Alexandra M. Z. ; Organic Semiconductor Centre, University of St Andrews, EaStCHEM School of Chemistry, St Andrews, United Kingdom
Olivier, Yoann ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux ; Unité de Chimie Physique Théorique et Structurale (UCPTS) & Laboratoire de Physique du Solide (LPS), University of Namur, Namur Institute of Structured Matter (NISM), Namur, Belgium
Cornil, Jérôme ; Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
Ding, Zhifeng ; Department of Chemistry, The University of Western Ontario, London, Canada
Zysman-Colman, Eli ; Organic Semiconductor Centre, University of St Andrews, EaStCHEM School of Chemistry, St Andrews, United Kingdom
R400 - Institut de Recherche en Science et Ingénierie des Matériaux R150 - Institut de Recherche sur les Systèmes Complexes
Funders :
Fonds De La Recherche Scientifique - FNRS H2020 Marie Skłodowska-Curie Actions Royal Society Canada Foundation for Innovation Natural Sciences and Engineering Research Council of Canada Engineering and Physical Sciences Research Council
Funding text :
The authors thank Dr Sai Kiran Rajendran for providing PL and TCSPC data of 2CzPN in neat film. SK acknowledges the financial support from European Union's Horizon 2020 research and innovation programme under Marie Skłodowska Curie Individual Fellowship (MCIF; Agreement No. 748430-THF-OLED). P. R acknowledges support from a Marie Skłodowska-Curie Individual Fellowship (No. 749557). We thank the EPSRC UK National Mass Spectrometry Facility at Swansea University for analytical services. The work has been supported in Mons by European Union through the Interreg V initiative France-Wallonie-Vlaanderen project LUMINOPTEX and the Belgian National Fund for Scientific Research (FRS-FNRS). Computational resources were provided by the Consortium des Équipements de Calcul Intensif (CÉCI) funded by F. R. S.-FNRS under Grant 2.5020.11. J. C. is an FNRS research director. Y. O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant no F.4534.21 (MIS-IMAGINE). We acknowledge the research support from Natural Sciences and Engineering Research Council Canada (NSERC, DG RGPIN-2013-201697, DG RGPIN-2018-06556, and SPG STPGP-2016-493924), Canada Foundation of Innovation, Ontario Innovation Trust (CFI/OIT, 9040) and Western University. J. R. A. appreciates the Ontario graduate scholarships (2018–2022). EZ-C is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license.The authors thank Dr Sai Kiran Rajendran for providing PL and TCSPC data of 2CzPN in neat film. SK acknowledges the financial support from European Union's Horizon 2020 research and innovation programme under Marie Sk?odowska Curie Individual Fellowship (MCIF; Agreement No. 748430-THF-OLED). P. R acknowledges support from a Marie Sk?odowska-Curie Individual Fellowship (No. 749557). We thank the EPSRC UK National Mass Spectrometry Facility at Swansea University for analytical services. The work has been supported in Mons by European Union through the Interreg V initiative France-Wallonie-Vlaanderen project LUMINOPTEX and the Belgian National Fund for Scientific Research (FRS-FNRS). Computational resources were provided by the Consortium des ?quipements de Calcul Intensif (C?CI) funded by F. R. S.-FNRS under Grant 2.5020.11. J. C. is an FNRS research director. Y. O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant no F.4534.21 (MIS-IMAGINE). We acknowledge the research support from Natural Sciences and Engineering Research Council Canada (NSERC, DG RGPIN-2013-201697, DG RGPIN-2018-06556, and SPG STPGP-2016-493924), Canada Foundation of Innovation, Ontario Innovation Trust (CFI/OIT, 9040) and Western University. J. R. A. appreciates the Ontario graduate scholarships (2018-2022). EZ-C is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license.
Sun Y. Giebink N. C. Kanno H. Ma B. Thompson M. E. Forrest S. R. Management of Singlet and Triplet Excitons for Efficient White Organic Light-Emitting Devices Nature 2006 440 908 912 10.1038/nature04645 16612378
Adachi C. Baldo M. A. Thompson M. E. Forrest S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device J. Appl. Phys. 2001 90 5048 5051 10.1063/1.1409582
Klubek K. P. Tang C. W. Rothberg L. J. Investigation of Blue Phosphorescent Organic Light-Emitting Diode Host and Dopant Stability Org. Electron. 2014 15 1312 1316 10.1016/j.orgel.2014.03.020
Huang T. Jiang W. Duan L. Recent Progress in Solution Processable TADF Materials for Organic Light-Emitting Diodes J. Mater. Chem. C 2018 6 5577 5596 10.1039/C8TC01139G
Jeon S. K. Lee H. L. Yook K. S. Lee J. Y. Recent Progress of the Lifetime of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescent Material Adv. Mater. 2019 31 1803524 10.1002/adma.201803524 30907464
Godumala M. Choi S. Cho M. J. Choi D. H. Recent Breakthroughs in Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes Containing Non-Doped Emitting Layers J. Mater. Chem. C 2019 7 2172 2198 10.1039/C8TC06293E
Data P. Takeda Y. Recent Advancements in and the Future of Organic Emitters: TADF- and RTP-Active Multifunctional Organic Materials Chem. - Asian J. 2019 14 1613 1636 10.1002/asia.201801791 30609306
Olivier Y. Sancho-Garcia J. C. Muccioli L. D’Avino G. Beljonne D. Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead J. Phys. Chem. Lett. 2018 9 6149 6163 10.1021/acs.jpclett.8b02327 30265539
Uoyama H. Goushi K. Shizu K. Nomura H. Adachi C. Highly Efficient Organic Light Emitting Diodes from Delayed Fluorescence Nature 2012 492 234 238 10.1038/nature11687 23235877
de Silva P. Kim C. A. Zhu T. Van Voorhis T. Extracting Design Principles for Efficient Thermally Activated Delayed Fluorescence (TADF) from a Simple Four-State Model Chem. Mater. 2019 31 6995 7006 10.1021/acs.chemmater.9b01601
Nobuyasu R. S. Ren Z. Griffiths G. C. Batsanov A. S. Data P. Yan S. Monkman A. P. Bryce M. R. Dias F. B. Rational Design of TADF Polymers Using a Donor-Acceptor Monomer with Enhanced TADF Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States Adv. Opt. Mater. 2016 4 597 607 10.1002/adom.201500689
Reineke S. Lindner F. Schwartz G. Seidler N. Walzer K. Lüssem B. Leo K. White Organic Light-Emitting Diodes With Fluorescent Tube Efficiency Nature 2009 459 234 238 10.1038/nature08003
Tao Y. Yuan K. Chen T. Xu P. Li H. Chen R. Zheng C. Zhang L. Huang W. Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics Adv. Mater. 2014 26 7931 7958 10.1002/adma.201402532 25230116
Spuling E. Sharma N. Samuel I. D. W. Zysman-Colman E. Bräse S. (Deep) Blue Through-Space Conjugated TADF Emitters Based on [2.2]Paracyclophanes Chem. Commun. 2018 54 9278 9281 10.1039/C8CC04594A 30047551
Hatakeyama T. Shiren K. Nakajima K. Nomura S. Nakatsuka S. Kinoshita K. Ni J. Ono Y. Ikuta T. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect Adv. Mater. 2016 28 2777 2781 10.1002/adma.201505491 26865384
Auffray M. Kim D. H. Kim J. U. Bencheikh F. Kreher D. Zhang Q. D'Aléo A. Ribierre J.-C. Mathevet F. Adachi C. Dithia[3.3]paracyclophane Core: A Versatile Platform for Triplet State Fine-Tuning and Through-Space TADF Emission Chem. - Asian J. 2019 14 1921 1925 10.1002/asia.201900401 30912261
Lee J. Aizawa N. Yasuda T. Molecular Engineering of Phosphacycle-Based Thermally Activated Delayed Fluorescence Materials for Deep-Blue OLEDs J. Mater. Chem. C 2018 6 3578 3583 10.1039/C7TC05709A
Liang X. Yan Z.-P. Han H.-B. Wu Z.-G. Zheng Y.-X. Meng H. Zuo J.-L. Huang W. Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs Angew. Chem., Int. Ed. 2018 57 11316 11320 10.1002/anie.201806323 29974588
Cho Y. J. Jeon S. K. Lee S.-S. Yu E. Lee J. Y. Donor Interlocked Molecular Design for Fluorescence-like Narrow Emission in Deep Blue Thermally Activated Delayed Fluorescent Emitters Chem. Mater. 2016 28 5400 5405 10.1021/acs.chemmater.6b01484
Mei L. Hu J. Cao X. Wang F. Zheng C. Tao Y. Zhang X. Huang W. The Inductive-Effect of Electron Withdrawing Trifluoromethyl for Thermally Activated Delayed Fluorescence: Tunable Emission from Tetra- to Penta-Carbazole in Solution Processed Blue OLEDs Chem. Commun. 2015 51 13024 13027 10.1039/C5CC04126K 26179717
Wang H. Xie L. Peng Q. Meng L. Wang Y. Yi Y. Wang P. Novel Thermally Activated Delayed Fluorescence Materials-Thioxanthone Derivatives and Their Applications for Highly Efficient OLEDs Adv. Mater. 2014 26 5198 5204 10.1002/adma.201401393 24903266
Furue R. Nishimoto T. Park I. S. Lee J. Yasuda T. Aggregation-Induced Delayed Fluorescence Based on Donor/Acceptor-Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs Angew. Chem., Int. Ed. 2016 55 7171 7175 10.1002/anie.201603232
Higginbotham H. F. Pander P. Rybakiewicz R. Etherington M. K. Maniam S. Zagorska M. Pron A. Monkman A. P. Data P. Triphenylamine Disubstituted Naphthalene Diimide: Elucidation of Excited States Involved in TADF and Application in Near-Infrared Organic Light Emitting Diodes J. Mater. Chem. C 2018 6 8219 8225 10.1039/C8TC02936A
Xie G. Li X. Chen D. Wang Z. Cai X. Chen D. Li Y. Liu K. Cao Y. Su S.-J. Evaporation- and Solution-Process-Feasible Highly Efficient Thianthrene-9,9′,10,10′-Tetraoxide-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Efficiency Roll-Off Adv. Mater. 2016 28 181 187 10.1002/adma.201503225 26551788
Lin T.-A. Chatterjee T. Tsai W.-L. Lee W.-K. Wu M.-J. Jiao M. Pan K.-C. Yi C.-L. Chung C.-L. Wong K.-T. Wu C.-C. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid Adv. Mater. 2016 28 6976 6983 10.1002/adma.201601675 27271917
Takahashi T. Shizu K. Yasuda T. Togashi K. Adachi C. Donor-Acceptor-Structured 1,4-Diazatriphenylene Derivatives Exhibiting Thermally Activated Delayed Fluorescence: Design and Synthesis, Photophysical Properties and OLED Characteristics Sci. Technol. Adv. Mater. 2014 15 034202 10.1088/1468-6996/15/3/034202 27877670
Tanaka H. Shizu K. Nakanotani H. Adachi C. Twisted Intramolecular Charge Transfer State for Long-Wavelength Thermally Activated Delayed Fluorescence Chem. Mater. 2013 25 3766 3771 10.1021/cm402428a
Lee J. Shizu K. Tanaka H. Nomura H. Yasuda T. Adachi C. Oxadiazole- and Triazole-Based Highly-Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes J. Mater. Chem. C 2013 1 4599 4604 10.1039/C3TC30699B
Duan C. Li J. Han C. Ding D. Yang H. Wei Y. Xu H. Multi-dipolar Chromophores Featuring Phosphine Oxide as Joint Acceptor: A New Strategy toward High-Efficiency Blue Thermally Activated Delayed Fluorescence Dyes Chem. Mater. 2016 28 5667 5679 10.1021/acs.chemmater.6b01691
Chen D.-Y. Liu W. Zheng C.-J. Wang K. Li F. Tao S. L. Ou X.-M. Zhang X.-H. Isomeric Thermally Activated Delayed Fluorescence Emitters for Color Purity-Improved Emission in Organic Light-Emitting Devices ACS Appl. Mater. Interfaces 2016 8 16791 16798 10.1021/acsami.6b03954 27296853
Aizawa N. Tsou C.-J. Park I. S. Yasuda T. Aggregation-Induced Delayed Fluorescence From Phenothiazine-Containing Donor-Acceptor Molecules for High-Efficiency Non-Doped Organic Light-Emitting Diodes Polym. J. 2017 49 197 202 10.1038/pj.2016.82
Xu S. Liu T. Mu Y. Wang Y.-F. Chi Z. Lo C.-C. Liu S. Zhang Y. Lien A. Xu J. An Organic Molecule with Asymmetric Structure Exhibiting Aggregation-Induced Emission, Delayed Fluorescence, and Mechanoluminescence Angew. Chem., Int. Ed. 2015 54 874 878 10.1002/anie.201409767 25469742
Lee D. R. Kim B. S. Lee C. W. Im Y. Yook K. S. Hwang S.-H. Lee J. Y. Above 30% External Quantum Efficiency in Green Delayed Fluorescent Organic Light-Emitting Diodes ACS Appl. Mater. Interfaces 2015 7 9625 9629 10.1021/acsami.5b01220 25924007
Jeon S. K. Lee J. Y. Highly Efficient Exciplex Organic Light-Emitting Diodes by Exciplex Dispersion in the Thermally Activated Delayed Fluorescence Host Org. Electron. 2020 76 105477 10.1016/j.orgel.2019.105477
Wex B. Kaafarani B. R. Perspective on Carbazole-Based Organic Compounds as Emitters and Hosts in TADF Applications J. Mater. Chem. C 2017 5 8622 8653 10.1039/C7TC02156A
Cho Y. J. Yook K. S. Lee J. Y. High Efficiency in a Solution-Processed Thermally Activated Delayed-Fluorescence Device Using a Delayed-Fluorescence Emitting Material with Improved Solubility Adv. Mater. 2014 26 6642 6646 10.1002/adma.201402188 25179914
Wu S. Aonuma M. Zhang Q. Huang S. Nakagawa T. Kuwabara K. Adachi C. High-Efficiency Deep-Blue Organic Light-Emitting Diodes Based on a Thermally Activated Delayed Fluorescence Emitter J. Mater. Chem. C 2014 2 421 424 10.1039/C3TC31936A
Kim G. H. Lampande R. Park M. J. Bae H. W. Kong J. H. Kwon J. H. Park J. H. Park Y. W. Song C. E. Highly Efficient Bipolar Host Materials with Indenocarbazole and Pyrimidine Moieties for Phosphorescent Green Light-Emitting Diodes J. Phys. Chem. C 2014 118 28757 28763 10.1021/jp507036h
Lee D. R. Choi J. M. Lee C. W. Lee J. Y. Ideal Molecular Design of Blue Thermally Activated Delayed Fluorescent Emitter for High Efficiency, Small Singlet-Triplet Energy Splitting, Low Efficiency Roll-Off, and Long Lifetime ACS Appl. Mater. Interfaces 2016 8 23190 23196 10.1021/acsami.6b05877 27529181
Sun K. Sun Y. Huang T. Luo J. Jiang W. Sun Y. Design Strategy of Yellow Thermally Activated Delayed Fluorescent Dendrimers and Their Highly Efficient Non-Doped Solution-Processed OLEDs with Low Driving Voltage Org. Electron. 2017 42 123 130 10.1016/j.orgel.2016.12.026
Albrecht K. Matsuoka K. Fujita K. Yamamoto K. Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials Angew. Chem., Int. Ed. 2015 54 5677 5682 10.1002/anie.201500203 25753430
Lee D. R. Hwang S.-H. Jeon S. K. Lee C. W. Lee J. Y. Benzofurocarbazole and Benzothienocarbazole as Donors for Improved Quantum Efficiency in Blue Thermally Activated Delayed Fluorescent Devices Chem. Commun. 2015 51 8105 8107 10.1039/C5CC01940K 25869643
Sharma N. Spuling E. Mattern C. M. Li W. Fuhr O. Tsuchiya Y. Adachi C. Bräse S. Samuel I. D. W. Zysman-Colman E. Turn on of Sky-Blue Thermally Activated Delayed Fluorescence and Circularly Polarized Luminescence (CPL) via Increased Torsion by a Bulky Carbazolophane Donor Chem. Sci. 2019 10 6689 6696 10.1039/C9SC01821B 31367323
Huang B. Jiang W. Liu Y. Y. Zhang Y. A. Yang Y. P. Dai Y. Ban X. X. Xu H. G. Sun Y. M. Thermally Activated Delayed Fluorescence Materials Based on Carbazole/Sulfone Adv. Mater. Res. 2014 1044-1045 158 163
Im Y. Lee J. Y. Effect of the Position of Nitrogen in Pyridoindole on Photophysical Properties and Device Performances of α-, β-, γ-Carboline Based High Triplet Energy Host Materials for deep Blue Devices Chem. Commun. 2013 49 5948 5950 10.1039/C3CC42131G 23714695
Jun J.-W. Lee K.-M. Kim O. Y. Lee J. Y. Hwang S.-H. Synthesis of a Dibenzothiophene/Carboline/Carbazole Hybrid Bipolar Host Material for Green Phosphorescent OLEDs Synth. Met. 2016 213 7 11 10.1016/j.synthmet.2015.12.022
Byeon S. Y. Jeon S. K. Hwang S.-H. Lee J. Y. Carbazole-Carboline Core as a Backbone Structure of High Triplet Energy Host Materials Dyes Pigm. 2015 120 258 264 10.1016/j.dyepig.2015.04.024
Zhang Z. Xie J. Wang Z. Shen B. Wang H. Li M. Zhang J. Cao J. Manipulation of Electron Deficiency of δ-Carboline Derivatives as Bipolar Hosts for Blue Phosphorescent Organic Light-Emitting Diodes with High Efficiency at 1000 cd m−2 J. Mater. Chem. C 2016 4 4226 4235 10.1039/C6TC00804F
Lee C. W. Lee J. Y. Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Light-Emitting Diodes Using Pyrido[2,3-b]indole Derivatives as Host Materials Adv. Mater. 2013 25 5450 5454 10.1002/adma.201301091 23788128
Lai C.-C. Huang M.-J. Chou H.-H. Liao C.-Y. Rajamalli P. Cheng C.-H. m-Indolocarbazole Derivative as a Universal Host Material for RGB and White Phosphorescent OLEDs Adv. Funct. Mater. 2015 25 5548 5556 10.1002/adfm.201502079
Yook K. S. Lee J. Y. Bipolar Host Materials for Organic Light-Emitting Diodes Chem. Rec. 2016 16 159 172 10.1002/tcr.201500221 26593740
Lin M.-S. Chi L.-C. Chang H.-W. Huang Y.-H. Tien K.-C. Chen C.-C. Chang C.-H. Wu C.-C. Chaskar A. Chou S.-H. Ting H.-C. Wong K.-T. Liu Y.-H. Chi Y. A Diarylborane-Substituted Carbazole as a Universal Bipolar Host Material for Highly Efficient Electrophosphorescence Devices J. Mater. Chem. 2012 22 870 876 10.1039/C1JM13323C
Lin M.-S. Yang S.-J. Chang H.-W. Huang Y.-H. Tsai Y.-T. Wu C.-C. Chou S.-H. Mondal E. Wong K.-T. Incorporation of a CN Group into mCP: A New Bipolar Host Material for Highly Efficient Blue and White Electrophosphorescent Devices J. Mater. Chem. 2012 22 16114 16120 10.1039/C2JM32717A
Oh C. S. Choi J. M. Lee J. Y. Chemical Bond Stabilization and Exciton Management by CN Modified Host Material for Improved Efficiency and Lifetime in Blue Phosphorescent Organic Light-Emitting Diodes Adv. Opt. Mater. 2016 4 1281 1287 10.1002/adom.201600131
Zhang Q. Li J. Shizu K. Huang S. Hirata S. Miyazaki H. Adachi C. Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes J. Am. Chem. Soc. 2012 134 14706 14709 10.1021/ja306538w 22931361
Hirata S. Sakai Y. Masui K. Tanaka H. Lee S. Y. Nomura H. Nakamura N. Yasumatsu M. Nakanotani H. Zhang Q. Shizu K. Miyazaki H. Adachi C. Highly Efficient Blue Electroluminescence Based on Thermally Activated Delayed Fluorescence Nat. Mater. 2015 14 330 336 10.1038/nmat4154 25485987
Colella M. Danos A. Monkman A. P. Less Is More: Dilution Enhances Optical and Electrical Performance of a TADF Exciplex J. Phys. Chem. Lett. 2019 10 793 798 10.1021/acs.jpclett.8b03646 30726086
Masui K. Nakanotani H. Adachi C. Analysis of Exciton Annihilation in High-Efficiency Sky-Blue Organic Light-Emitting Diodes With Thermally Activated Delayed Fluorescence Org. Electron. 2013 14 2721 2726 10.1016/j.orgel.2013.07.010
Hehre W. J. Ditchfield R. Pople J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules J. Chem. Phys. 1972 56 2257 2261 10.1063/1.1677527
Adsetts J. R. Zhang R. Yang L. Chu K. Wong J. M. Love D. A. Ding Z. Efficient White Electrochemiluminescent Emission From Carbon Quantum Dot Films Front. Chem. 2020 8 580022 10.3389/fchem.2020.580022 33134278
Chu K. Adsetts J. R. He S. Zhan Z. Yang L. Wong J. M. Love D. A. Ding Z. Electrogenerated Chemiluminescence and Electroluminescence of N-Doped Graphene Quantum Dots Fabricated from an Electrochemical Exfoliation Process in Nitrogen-Containing Electrolytes Chem. - Eur. J. 2020 26 15892 15900 10.1002/chem.202003395 32780915
Adsetts J. R. Hoesterey S. Gao C. Love D. A. Ding Z. Electrochemiluminescence and Photoluminescence of Carbon Quantum Dots Controlled by Aggregation-Induced Emission, Aggregation-Caused Quenching and Interfacial Reactions Langmuir 2020 36 14432 14442 10.1021/acs.langmuir.0c02886 33207119
Chu K. Adsetts J. R. Moore C. Ding Z. Spooling Electroluminescence Spectroscopy of Ru(bpy)32+ Light-Emitting Electrochemical Cells with an Atomic Layer Deposited Zinc Oxide Electron-Transporting/Hole-Blocking Interlayer ACS Appl. Electron. Mater. 2020 2 3825 3830 10.1021/acsaelm.0c00848
Grabner E. W. Brauer E. Electrochemiluminescence of Energy-Deficient Systems II. The Role of Excimer Formation in the Pure Perylene System Ber. Bunsen-Ges. Phys. Chem. 1971 76 111 114
Yang L. Zhang B. Fu L. Fu K. Zou G. Efficient and Monochromatic Electrochemiluminescence of Aqueous-Soluble Au Nanoclusters via Host-Guest Recognition Angew. Chem., Int. Ed. 2019 58 6901 6905 10.1002/anie.201900115 30945424
Ishimatsu R. Matsunami S. Kasahara T. Mizuno J. Edura T. Adachi C. Nakano K. Imato T. Electrogenerated Chemiluminescence of Donor-Acceptor Molecules with Thermally Activated Delayed Fluorescence Angew. Chem., Int. Ed. 2014 53 6993 6996 10.1002/anie.201402615 24853608
Feldberg S. W. A Possible Method for Distinguishing between Triplet-Triplet Annihilation and Direct Singlet Formation in Electrogenerated Chemiluminescence J. Phys. Chem. 1966 70 3928 3930 10.1021/j100884a030
Yang L. Koo D. Wu J. Wong J. M. Day T. Zhang R. Kolongoda H. Liu K. Wang J. Ding Z. Pagenkopf B. L. Benzosiloles with Crystallization-Induced Emission Enhancement of Electrochemiluminescence: Synthesis, Electrochemistry, and Crystallography Chemistry 2020 26 11715 11721 10.1002/chem.202002647 32484982
Adsetts J. R. Ding Z. Film Electrochemiluminescence Controlled by Interfacial Reactions Along with Aggregation-, Matrix-Coordination-, and Crystallization-Induced Emissions ChemPlusChem 2021 86 155 165 10.1002/cplu.202000745 33459534
Wong J. M. Zhang R. Xie P. Yang L. Zhang M. Zhou R. Wang R. Shen Y. Yang B. Wang H. B. Ding Z. Revealing Crystallization-Induced Blue-Shift Emission of a Di-Boron Complex by Enhanced Photoluminescence and Electrochemiluminescence Angew. Chem., Int. Ed. 2020 59 17461 17466 10.1002/anie.202007588 32588510
Ege D. Becker W. G. Bard A. J. Electrogenerated Chemiluminescent Determination of Ru(bpy)32+ at Low Levels Anal. Chem. 1984 56 2413 2417 10.1021/ac00277a036 6517331
Chandross E. A. Sonntag F. I. A Novel Chemiluminescent Electron-Transfer Reaction J. Am. Chem. Soc. 1964 86 3179 3180 10.1021/ja01069a061
Hercules D. M. Chemiluminescence Resulting From Electrochemically Generated Species Science 1964 145 808 809 10.1126/science.145.3634.808 17816303
Santhanam K. S. V. Bard A. J. Chemiluminescence of Electrogenerated 9,10-Diphenylathracene Anion Radical J. Am. Chem. Soc. 1965 87 139 140 10.1021/ja01079a039
Liu Z. Qi W. Xu G. Recent Advances in Electrochemiluminescence Chem. Soc. Rev. 2015 44 3117 3142 10.1039/C5CS00086F 25803228
Etherington M. K. Gibson J. Higginbotham H. F. Penfold T. J. Monkman A. P. Revealing the Spin-Vibronic Coupling Mechanism of Thermally Activated Delayed Fluorescence Nat. Commun. 2016 7 13680 10.1038/ncomms13680 27901046
Zeng Z. Huang P. Kong Y. Tong L. Zhang B. Luo Y. Chen L. Zhang Y. Han D. Niu L. Nanoencapsulation Strategy: Enabling Electrochemiluminescence of Thermally Activated Delayed Fluorescence (TADF) Emitters in Aqueous Media Chem. Commun. 2021 57 5262 5265 10.1039/D1CC01705E 34008623
Ishimatsu R. Edura T. Adachi C. Nakano K. Imato T. Photophysical Properties and Efficient, Stable, Electrogenerated Chemiluminescence of Donor-Acceptor Molecules Exhibiting Thermal Spin Upconversion Chem. - Eur. J. 2016 22 4889 4898 10.1002/chem.201600077 26916843
Kapturkiewicz A. Electrochemical Generation of Excited Intramolecular Charge-Transfer States ChemElectroChem 2017 4 1604 1638 10.1002/celc.201600865
Wong M. Y. Hedley G. J. Xie G. Kölln L. S. Samuel I. D. W. Pertegás A. Bolink H. J. Zysman-Colman E. Light-Emitting Electrochemical Cells and Solution-Processed Organic Light-Emitting Diodes Using Small Molecule Organic Thermally Activated Delayed Fluorescence Emitters Chem. Mater. 2015 27 6535 6542 10.1021/acs.chemmater.5b03245
Demas J. N. Crosby G. A. The Measurement of Photoluminescence Quantum Yields. A Review J. Phys. Chem. 1971 75 991 1024 10.1021/j100678a001
Melhuish W. H. QUANTUM EFFICIENCIES OF FLUORESCENCE OF ORGANIC SUBSTANCES: EFFECT OF SOLVENT AND CONCENTRATION OF THE FLUORESCENT SOLUTE1 J. Phys. Chem. 1961 65 229 235 10.1021/j100820a009
Adsetts J. Zhang R. Yang L. Chu K. Wong J. Love D. A. Ding Z. Efficient White Electrochemiluminescent Emission from Carbon Quantum Dot Films Front. Chem. 2020 8 865 878
Faulkner L. R. Tachikawa H. Bard A. J. Electrogenerated Chemiluminescence. VII. The Influence of an External Magnetic Field on Luminescence Intensity J. Am. Chem. Soc. 1972 94 691 699 10.1021/ja00758a001
Wong M. Y. Krotkus S. Copley G. Li W. Murawski C. Hall D. Hedley G. J. Jaricot M. Cordes D. B. Slawin A. M. Z. Olivier Y. Beljonne D. Muccioli L. Moral M. Sancho-Garcia J.-C. Gather M. C. Samuel I. D. W. Zysman-Colman E. Deep-Blue Oxadiazole-Containing Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes ACS Appl. Mater. Interfaces 2018 10 33360 33372 10.1021/acsami.8b11136 30192504
Melhuish W. H. Quantum Efficiencies of Fluorescence of Organic Substances: Effect of Solvent and Concentration of the Fluorescent Solute J. Phys. Chem. 1961 65 229 235 10.1021/j100820a009
Connelly N. G. Geiger W. E. Chemical Redox Agents for Organometallic Chemistry Chem. Rev. 1996 96 877 910 10.1021/cr940053x 11848774
Cardona C. M. Li W. Kaifer A. E. Stockdale D. Bazan G. C. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications Adv. Mater. 2011 23 2367 2371 10.1002/adma.201004554 21462372
Moral M. Muccioli L. Son W. J. Olivier Y. Sancho-García J. C. Theoretical Rationalization of the Singlet-Triplet Gap in OLEDs Materials: Impact of Charge-Transfer Character J. Chem. Theory Comput. 2015 11 168 177 10.1021/ct500957s 26574215
Adamo C. Barone V. Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model J. Chem. Phys. 1999 110 6158 6170 10.1063/1.478522
Ditchfield R. Hehre W. J. Pople J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules J. Chem. Phys. 1971 54 724 728 10.1063/1.1674902
Hirata S. Head-Gordon M. Time-Dependent Density Functional Theory Within the Tamm-Dancoff Approximation Chem. Phys. Lett. 1999 314 291 299 10.1016/S0009-2614(99)01149-5
Geng Y. D'Aleo A. Inada K. Cui L.-S. Kim J. U. Nakanotani H. Adachi C. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion Angew. Chem., Int. Ed. 2017 56 16536 16540 10.1002/anie.201708876 29105906
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Laham A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C. and Pople J. A., Gaussian 03, Revision C.02
Noda H. Chen X.-K. Nakanotani H. Hosokai T. Miyajima M. Notsuka N. Kashima Y. Brédas J.-L. Adachi C. Critical Role of Intermediate Electronic States for Spin-Flip Processes in Charge-Transfer-Type Organic Molecules with Multiple Donors and Acceptors Nat. Mater. 2019 18 1084 1090 10.1038/s41563-019-0465-6 31477903
Klymenko O. V. Svir I. Amatore C. A New Approach for the Simulation of Electrochemiluminescence (ECL) ChemPhysChem 2013 14 2237 2250 10.1002/cphc.201300126 23616388
Chandross E. A. Sonntag F. I. Chemiluminescent Electron-Transfer Reactions of Radical Anions J. Am. Chem. Soc. 1966 88 1089 1096 10.1021/ja00958a001
Coehoorn R. Bobbert P. A. van Eersel H. Förster-Type Triplet-Polaron Quenching in Disordered Organic Semiconductors Phys. Rev. B 2017 96 184203 10.1103/PhysRevB.96.184203
Tokel-Takvoryan N. E. Hemingway R. E. Bard A. J. Electrogenerated Chemiluminescence. XIII. Electrochemical and Electrogenerated Chemiluminescence Studies of Ruthenium Chelates J. Am. Chem. Soc. 1973 95 6582 6589 10.1021/ja00801a011
Tokel N. E. Bard A. J. Electrogenerated Chemiluminescence. IX. Electrochemistry and emission From Systems Containing Tris(2,2'-bipyridine)ruthenium(ii) Dichloride J. Am. Chem. Soc. 1972 94 2862 2863 10.1021/ja00763a056
Wallace W. L. Bard A. J. Electrogenerated Chemiluminescence. 35. Temperature Dependence of the ECL Efficiency of Ru(bpy)32+ in Acetonitrile and Evidence for Very High Excited State Yields from Electron Transfer Reactions J. Phys. Chem. 1979 83 1350 1357 10.1021/j100473a022
Lytle F. E. Hercules D. M. Chemiluminescence From The Reduction of Aromatic Amine Cations and Ruthenium(iii) Chelates Photochem. Photobiol. 1970 13 123 133 10.1111/j.1751-1097.1971.tb06098.x
Saiki H. Takami K. Tominaga T. Diffusion of Porphyrins and Quinones in Organic Solvents Phys. Chem. Chem. Phys. 1998 1 303 306
Barbante G. J. Hogan C. F. Wilson D. J. Lewcenko N. A. Pfeffer F. M. Barnett N. W. Francis P. S. Simultaneous Control of Spectroscopic and Electrochemical Properties in Functionalised Electrochemiluminescent Tris(2,2'-bipyridine)ruthenium(ii) Complexes Analyst 2011 136 1329 1338 10.1039/C0AN00952K 21293803
Parker C. A. Hatchard C. G. Delayed Fluorescence From Solutions of Anthracene and Phenanthrene Proc. R. Soc. London, Ser. A 1962 269 574 584
Grüne J. Bunzmann N. Meinecke M. Dyakonov V. Sperlich A. Kinetic Modeling of Transient Electroluminescence Reveals TTA as an Efficiency-Limiting Process in Exciplex-Based TADF OLEDs J. Phys. Chem. C 2020 124 25667 25674 10.1021/acs.jpcc.0c06528
Niwa A. Haseyama S. Kobayashi T. Nagase T. Goushi K. Adachi C. Naito H. Triplet-Triplet Annihilation in a Thermally Activated Delayed Fluorescence Emitter Lightly Doped in a Host Appl. Phys. Lett. 2018 113 083301 083305 10.1063/1.5025870
Masui K. Nakanotani H. Adachi C. Analysis of Exciton Annihilation in High-Efficiency Sky Blue Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescence Org. Electron. 2013 14 2721 2726 10.1016/j.orgel.2013.07.010
Miao W. Electrogenerated Chemiluminescence and Its Biorelated Applications Chem. Rev. 2008 108 2506 2553 10.1021/cr068083a 18505298
Cormier M. J., Hercules D. M. and Lee J., Chemiluminescence and Bioluminescence, Springer, Boston MA, 1973
Rosenmund J. Doblhofer K. The Effects of Uncompensated Solution Resistance and Rate of the Homogenous Electron Transfer Reaction on Electrochemiluminescence Transients J. Electroanal. Chem. 1995 396 77 83 10.1016/0022-0728(95)04035-M
Kabe R. Adachi C. Organic Long Persistent Luminescence Nature 2017 550 384 387 10.1038/nature24010 28967911
Tan S. Jinnai K. Kabe R. Adachi C. Long-Persistent Luminescence From an Exciplex-Based Organic Light-Emitting Diode Adv. Mater. 2021 e2008844 10.1002/adma.202008844 33945182
Jinnai K. Nishimura N. Adachi C. Kabe R. Thermally Activated Processes in an Organic Long-Persistent Luminescence System Nanoscale 2021 13 8412 8417 10.1039/D0NR09227D 33908428
Li W. Li Z. Si C. Wong M. Y. Jinnai K. Gupta A. K. Kabe R. Adachi C. Huang W. Zysman-Colman E. Samuel I. D. W. Organic Long-Persistent Luminescence from a Thermally Activated Delayed Fluorescence Compound Adv. Mater. 2020 32 e2003911 10.1002/adma.202003911 33029892
Cornil J. dos Santos D. A. Crispin X. Silbey R. Bredas J. L. Influence of Interchain Interactions on the Absorption and Luminescence of Conjugated Oligomers and Polymers: A Quantum-Chemical Characterization J. Am. Chem. Soc. 1998 120 1289 1299 10.1021/ja973761j
Tourneur P. Lucas F. Quinton C. Olivier Y. Lazzaroni R. Viville P. Cornil J. Poriel C. White-Light Electroluminescence From a Layer Incorporating a Single Fully-Organic Spiro Compound with Phosphine Oxide Substituents J. Mater. Chem. C 2020 8 14462 14468 10.1039/D0TC03285A
Newcomb R. Bangsund J. S. Hershey K. W. Rathwell D. C. K. Na H. Y. Jeon J. H. Trefonas P. Holmes R. J. Role of Host Excimer Formation in the Degradation of Organic Light-Emitting Devices Appl. Phys. Lett. 2020 116 063302 0633028 10.1063/1.5124802
Bui T. T. Goubard F. Ibrahim-Ouali M. Gigmes D. Dumur F. Thermally Activated Delayed Fluorescence Emitters for Deep Blue Organic Light Emitting Diodes: A Review of Recent Advances Appl. Sci. 2018 8 494 517 10.3390/app8040494