Artificial intelligence in medical education; Machine learning; Deep learning models; Educational technologies; Curriculum reforms, Medical curricula
Abstract :
[en] In the last decades, the medical practice has been facing noteworthy transformations driven by the advancement of innovative technologies like Artificial Intelligence (AI). This rapid and widespread transition generated the increasing need for an adequate education curriculum, capable of properly teaching medical students about the prospects and potentials of AI in healthcare. In this paper, we aim to present and describe the elaboration and implementation of a new academic program at the University of Mons (UMONS) designed to educate medical students about AI in healthcare. The course Pizzolla, Aro, Duez, De Lièvre, and Briganti was implemented in the 2022-2023 academic year aiming to train the next generation of healthcare professionals to effectively leverage AI in their work, ultimately leading to improved patient outcomes and advances in medical research.
Disciplines :
Human health sciences: Multidisciplinary, general & others Education & instruction
De Lièvre, Bruno ; Université de Mons - UMONS > Faculté de Psychologie et des Sciences de l'Education > Service d'Ingénierie pédagogique et numérique éducatif
Abdelsamea, M. M., Zidan, U., Senousy, Z., Gaber, M. M., Rakha, E., & Ilyas, M. (2022). A survey on artificial intelligence in histopathology image analysis. WIREs Data Mining and Knowledge Discovery, 12(6), e1474. https://doi.org/10.1002/widm.1474
Acs, B., & Hartman, J. (2020). Next generation pathology: Artificial intelligence enhances histopathology practice. The Journal of Pathology, 250(1), 7–8. https://doi.org/10.1002/path.5343
Attallah, O. (2021). MB-AI-His: Histopathological Diagnosis of Pediatric Medulloblastoma and its Subtypes via AI. Diagnostics, 11(2), Article 2. https://doi.org/10.3390/diagnostics11020359
Ayyad, S. M., Shehata, M., Shalaby, A., Abou El-Ghar, M., Ghazal, M., El-Melegy, M., Abdel-Hamid, N. B., Labib, L. M., Ali, H. A., & El-Baz, A. (2021). Role of AI and histopathological images in detecting prostate cancer: A survey. Sensors, 21(8), Article 8. https://doi.org/10.3390/s21082586
Beck, J.P. (2020, June 29). AI: Giving healthcare professionals ‘The Gift of Time’. The Parliament Magazine. https://www.theparliamentmagazine.eu/news/article/ai-giving-healthcare-professionals-the-gift-of-time
Brady, A. P., & Neri, E. (2020). Artificial intelligence in radiology—Ethical considerations. Diagnostics, 10(4), Article 4. https://doi.org/10.3390/diagnostics10040231
Briganti, G. (2023). Intelligence artificielle: Une introduction pour les cliniciens. Revue des Maladies Respiratoires. https://doi.org/10.1016/j. rmr.2023.02.005
Briganti, G., & Le Moine, O. (2020). Artificial intelligence in medicine: Today and tomorrow. Frontiers in Medicine, 7, 27. https://doi.org/10.3389/fmed.2020.00027
Briganti, G., & Pizzolla, I. (2023). Data from: ‘Integrating Artificial Intelligence into Medical Education: Lessons Learned from a Belgian Initiative’. https://doi.org/10.17605/OSF.IO/5YCJW
Byng, D., Strauch, B., Gnas, L., Leibig, C., Stephan, O., Bunk, S., & Hecht, G. (2022). AI-based prevention of interval cancers in a national mammography screening program. European Journal of Radiology, 152, 110321. https://doi.org/10.1016/j.ejrad.2022.110321
Castelvecchi, D. (2016). Can we open the black box of AI? Nature News, 538(7623), 20. https://doi.org/10.1038/538020a
Chan, K. S., & Zary, N. (2019). Applications and challenges of implementing artificial intelligence in medical education: Integrative review. JMIR Medical Education, 5(1), e13930. https://doi.org/10.2196/13930
Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care—Addressing ethical challenges. The New England Journal of Medicine, 378(11), 981. https://doi.org/10.1056/NEJMp1714229
Charow, R., Jeyakumar, T., Younus, S., Dolatabadi, E., Salhia, M., Al-Mouaswas, D., Anderson, M., Balakumar, S., Clare, M., Dhalla, A., Gillan, C., Haghzare, S., Jackson, E., Lalani, N., Mattson, J., Peteanu, W., Tripp, T., Waldorf, J., Williams, S., … Wiljer, D. (2021). Artificial intelligence education programs for health care professionals: Scoping review. JMIR Medical Education, 7(4), e31043. https://doi.org/10.2196/31043
Chen, J. H., & Asch, S. M. (2017). Machine learning and prediction in medicine—Beyond the peak of inflated expectations. The New England Journal of Medicine, 376(26), 2507–2509. https://doi.org/10.1056/NEJMp1702071
Civaner, M. M., Uncu, Y., Bulut, F., Chalil, E. G., & Tatli, A. (2022). Artificial intelligence in medical education: A cross-sectional needs assessment. BMC Medical Education, 22(1), 772. https://doi.org/10.1186/s12909-022-03852-3
Codari, M., Melazzini, L., Morozov, S. P., van Kuijk, C. C., Sconfienza, L. M., Sardanelli, F., & European Society of Radiology (ESR). (2019). Impact of artificial intelligence on radiology: A EuroAIM survey among members of the European Society of Radiology. Insights into Imaging, 10(1), 105. https://doi.org/10.1186/s13244-019-0798-3
Coppola, F., Faggioni, L., Gabelloni, M., De Vietro, F., Mendola, V., Cattabriga, A., Cocozza, M. A., Vara, G., Piccinino, A., Lo Monaco, S., Pastore, L. V., Mottola, M., Malavasi, S., Bevilacqua, A., Neri, E., & Golfieri, R. (2021). Human, all too human? An all-around appraisal of the “artificial intelligence revolution” in medical imaging. Frontiers in Psychology, 12. https://www.frontiersin.org/articles/10.3389/fpsyg.2021.710982
Cox, M., Blouin, A. S., Cuff, P., Paniagua, M., Phillips, S., & Vlasses, P. H. (2017). The role of accreditation in achieving the quadruple aim. NAM Perspectives. https://doi.org/10.31478/201710a
Densen, P. (2011). Challenges and opportunities facing medical education. Transactions of the American Clinical and Climatological Association, 122, 48–58.
Dlamini, Z., Skepu, A., Kim, N., Mkhabele, M., Khanyile, R., Molefi, T., Mbatha, S., Setlai, B., Mulaudzi, T., Mabongo, M., Bida, M., Kgoebane-Maseko, M., Mathabe, K., Lockhat, Z., Kgokolo, M., Chauke-Malinga, N., Ramagaga, S., & Hull, R. (2022). AI and precision oncology in clinical cancer genomics: From prevention to targeted cancer therapies-an outcomes based patient care. Informatics in Medicine Unlocked, 31, 100965. https://doi.org/10.1016/j.imu.2022.100965
Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017a). Machine learning for medical imaging. RadioGraphics, 37(2), 505–515. https://doi. org/10.1148/rg.2017160130
Foster, M., & Tasnim, Z. (2020). Data science and graduate nursing education: A critical literature review. Clinical Nurse Specialist, 34(3), 124. https://doi. org/10.1097/NUR.0000000000000516
Frommeyer, T. C., Fursmidt, R. M., Gilbert, M. M., & Bett, E. S. (2022). The desire of medical students to integrate artificial intelligence into medical education: An opinion article. Frontiers in Digital Health, 4. https://www. frontiersin.org/articles/10.3389/fdgth.2022.831123
He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. https://doi.org/10.1038/s41591-018-0307-0
Hegde, S., Ajila, V., Zhu, W., & Zeng, C. (2022). Artificial intelligence in early diagnosis and prevention of oral cancer. Asia-Pacific Journal of Oncology Nursing, 9(12), 100133. https://doi.org/10.1016/j.apjon.2022.100133
Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. WIREs Data Mining and Knowledge Discovery, 9(4), e1312. https://doi. org/10.1002/widm.1312
Hu, R., Fan, K. Y., Pandey, P., Hu, Z., Yau, O., Teng, M., Wang, P., Li, A., Ashraf, M., & Singla, R. (2022). Insights from teaching artificial intelligence to medical students in Canada. Communications Medicine, 2(1), Article 1. https://doi.org/10.1038/s43856-022-00125-4
Jin, D., Harrison, A. P., Zhang, L., Yan, K., Wang, Y., Cai, J., Miao, S., & Lu, L. (2021). Chapter 14—Artificial intelligence in radiology. In L. Xing, M. L. Giger, & J. K. Min (Eds.), Artificial Intelligence in Medicine (pp. 265–289). Academic Press. https://doi.org/10.1016/B978-0-12-821259-2.00014-4
Kang, S. K., Lee, C. I., Pandharipande, P. V., Sanelli, P. C., & Recht, M. P. (2017). Residents’ introduction to comparative effectiveness research and big data analytics. Journal of the American College of Radiology, 14(4), 534–536. https://doi.org/10.1016/j.jacr.2016.10.032
Kayser, K., GĂśrtler, Jă., Bogovac, M., Bogovac, A., Goldmann, T., Vollmer, E., & Kayser, G. (2009). AI (artificial intelligence) in histopathology—From image analysis to automated diagnosis. Folia Histochemica et Cytobiologica, 47(3), Article 3. https://doi.org/10.2478/v10042-009-0087-y
Kostkova, P. (2015). Grand challenges in digital health. Frontiers in Public Health, 3. https://www.frontiersin.org/articles/10.3389/fpubh.2015.00134
Lillehaug, S.-I., & Lajoie, S. P. (1998). AI in medical education—Another grand challenge for medical informatics. Artificial Intelligence in Medicine, 12(3), 197–225. https://doi.org/10.1016/S0933-3657(97)00054-7
Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3313831.3376727
Lui, T. K. L., Guo, C.-G., & Leung, W. K. (2020). Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: A systematic review and meta-analysis. Gastrointestinal Endoscopy, 92(1), 11-22.e6. https://doi.org/10.1016/j.gie.2020.02.033
Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi. org/10.1016/j.futures.2017.03.006
Masters, K. (2019). Artificial intelligence in medical education. Medical Teacher, 41(9), 976–980. https://doi.org/10.1080/0142159X.2019.1595557
Nicholson Price II, W. (2014). Black-Box Medicine (SSRN Scholarly Paper No. 2499885). https://papers.ssrn.com/abstract=2499885
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342
Paranjape, K., Schinkel, M., Nannan Panday, R., Car, J., & Nanayakkara, P. (2019). Introducing artificial intelligence training in medical education. JMIR Medical Education, 5(2), e16048. https://doi.org/10.2196/16048
Park, S. H., Kim, Y.-H., Lee, J. Y., Yoo, S., & Kim, C. J. (2019). Ethical challenges regarding artificial intelligence in medicine from the perspective of scientific editing and peer review. Science Editing, 6(2), 91–98. https://doi. org/10.6087/kcse.164
Pianykh, O. S., Langs, G., Dewey, M., Enzmann, D. R., Herold, C. J., Schoenberg, S. O., & Brink, J. A. (2020). Continuous learning AI in radiology: Implementation principles and early applications. Radiology, 297(1), 6–14. https://doi.org/10.1148/radiol.2020200038
Reyes, M., Meier, R., Pereira, S., Silva, C. A., Dahlweid, F.-M., Tengg-Kobligk, H. von, Summers, R. M., & Wiest, R. (2020). On the interpretability of artificial intelligence in radiology: Challenges and opportunities. Radiology: Artificial Intelligence, 2(3), e190043. https://doi.org/10.1148/ryai.2020190043
Robeznieks, A. (2018, November 20). 3 ways medical AI can improve workflow for physicians. American Medical Association. https://www.ama-assn.org/practice-management/digital/3-ways-medical-ai-can-improve-workflow-physicians
Saldanha, O. L., Quirke, P., West, N. P., James, J. A., Loughrey, M. B., Grabsch, H. I., Salto-Tellez, M., Alwers, E., Cifci, D., Ghaffari Laleh, N., Seibel, T., Gray, R., Hutchins, G. G. A., Brenner, H., van Treeck, M., Yuan, T., Brinker, T. J., Chang-Claude, J., Khader, F., … Kather, J. N. (2022). Swarm learning for decentralized artificial intelligence in cancer histopathology. Nature Medicine, 28(6), Article 6. https://doi.org/10.1038/s41591-022-01768-5
Sapci, A. H., & Sapci, H. A. (2020). Artificial intelligence education and tools for medical and health informatics students: Systematic Review. JMIR Medical Education, 6(1), e19285. https://doi.org/10.2196/19285
Shmatko, A., Ghaffari Laleh, N., Gerstung, M., & Kather, J. N. (2022). Artificial intelligence in histopathology: Enhancing cancer research and clinical oncology. Nature Cancer, 3(9), Article 9. https://doi.org/10.1038/s43018-022-00436-4
Singh, R. P., Hom, G. L., Abramoff, M. D., Campbell, J. P., Chiang, M. F., & on behalf of the AAO Task Force on Artificial Intelligence. (2020). Current challenges and barriers to real-world artificial intelligence adoption for the healthcare system, provider, and the patient. Translational Vision Science & Technology, 9(2), 45. https://doi.org/10.1167/tvst.9.2.45
Srivastava, T., & Waghmare, L. (2020). Implications of artificial intelligence (AI) on dynamics of medical education and care: A perspective. Journal of Clinical and Diagnostic Research, 14, 1–2. https://doi.org/10.7860/JCDR/2020/43293.13565
Tajmir, S. H., & Alkasab, T. K. (2018). Toward augmented radiologists: Changes in radiology education in the era of machine learning and artificial intelligence. Academic Radiology, 25(6), 747–750. https://doi.org/10.1016/j. acra.2018.03.007
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi. org/10.1038/s41591-018-0300-7
Wartman, S. A., & Combs, C. D. (2018). Medical education must move from the information age to the age of artificial intelligence. Academic Medicine, 93(8), 1107. https://doi.org/10.1097/ACM.0000000000002044