R450 - Institut NUMEDIART pour les Technologies des Arts Numériques R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique
Campbell, S.I. and Poole, G.D. (1981) Computing non-negative rank factorizations. Linear Algebra and its Applications, 35, 175-182.
Chen, J.C. (1984) The Nonnegative rank factorizations of nonnegative matrices. Linear Algebra and its Applications, 62, 207-217.
Cohen, J. and Rothblum, U. (1993) Non-negative ranks decompositions and factorizations of non-negative matrices. Linear Algebra and its Applications, 190, 149-168.
Paatero, P. and Tapper, U. (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111-126.
Lee, D. and Seung, H. (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788-791.
Tauler, R., Kowalski, B., and Fleming, S. (1993) Multivariate curve resolution applied to spectral data from multiple runs of an industrial process. Analytical Chemistry, 65, 2040-2047.
Paatero, P. (1997) Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37, 23-35.
Sajda, P., Du, S., Brown, T.R., Stoyanova, R., Shungu, D.C., Mao, X., and Parra, L.C. (2004) Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Transaction on Medical Imaging, 23(12), 1453-1465.
Hoyer, P. (2004) Nonnegative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5, 1457-1469.
Pascual-Montano, A., Carazo, J., Kochi, K., and Pascual-Marqui, R. (2006) Nonsmooth nonnegative matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3), 403-415.
Moussaoui, S., Brie, D., Mohammad-Djafari, A., and Carteret, C. (2006) Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling. IEEE Transactions on Signal Processing, 54(11), 4133-4145.
Gillis, N. (2020) Nonnegative Matrix Factorization, SIAM, Philadelphia, PA.
Das, G. and Joseph, D. (1990) The complexity of minimum convex nested polyhedra, in Proceedings of the 2nd Canadian Conference on Computational Geometry, pp. 296-301.
Aggarwal, A., Booth, H., O'Rourke, J., and Suri, S. (1989) Finding minimal convex nested polygons. Information and Computation, 83(1), 98-110.
Silio, C.B. (1979) An efficient simplex coverability algorithm in E2 with application to stochastic sequential machines. IEEE Transactions on Computers, 28(2), 109-120.
Mond, D., Smith, J., and van Straten, D. (2003) Stochastic factorizations, sandwiched simplices and the topology of the space of explanations. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 459(2039), 2821-2845.
Vavasis, S. (2010) On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization, 20(3), 1364-1377.
Gillis, N. and Glineur, F. (2012) On the geometric interpretation of the nonnegative rank. Linear Algebra and its Applications, 437(11), 2685-2712.
Chistikov, D., Kiefer, S., Marusic, I., Shirmohammadi, M., and Worrell, J. (2016) On restricted nonnegative matrix factorization, in 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 55(eds I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and D. Sangiorgi), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 103:1-103:14.
Cohen, J. and Rothblum, U. (1993) Nonnegative ranks, decompositions and factorization of nonnegative matrices. Linear Algebra and its Applications, 190, 149-168.
Goemans, M. (2015) Smallest compact formulation for the permutahedron. Mathematical Programming, 153(1), 5-11.
Vandaele, A., Gillis, N., and Glineur, F. (2017) On the linear extension complexity of regular n-gons. Linear Algebra and its Applications, 521, 217-239.
Moitra, A. (2013) An almost optimal algorithm for computing nonnegative rank, in Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '13), pp. 1454-1464.
Gillis, N. (2012) Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13, 3349-3386.
Park, E.S., Spiegelman, C.H., and Henry, R.C. (2002) Bilinear estimation of pollution source profiles and amounts by using multivariate receptor models. Environmetrics, 13, 775-798.
Smilde, A., Hoefsloot, H., Kiers, H., Bijlsma, S., and Boelens, H. (2001) Sufficient condition for unique solutions within a certain class of curve resolution models. Journal of Chemometrics, 15, 405-411.
Moussaoui, S., Brie, D., and Idier, J. (2005) Non-negative source separation: range of admissible solutions and conditions for the uniqueness of the solution, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'2005), Philadelphia, PA, USA.
Donoho, D. and Stodden, V. (2003) When does non-negative matrix factorization give a correct decomposition into parts? in Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, United States.
Laurberg, H., Christensen, M., Plumbley, M.D., Hansen, L.K., and Jensen, S.H. (2008) Theorems on positive data: on the uniqueness of NMF. Computational Intelligence and Neuroscience, 2008, Article ID 764206, 9 pages.
Fu, X., Huang, K., Sidiropoulos, N.D., and Ma, W.K. (2019) Nonnegative matrix factorization for signal and data analytics: identifiability, algorithms, and applications. IEEE Signal Processing Magazine, 36(2), 59-80.
Sasaki, K., Kawata, S., and Minami, S. (1983) Constrained nonlinear method for estimating component spectra from multicomponent mixtures. Applied Optics, 22(22), 3599-3606.
Moussaoui, S., Carteret, C., Brie, D., and Mohammad-Djafari, A. (2006) Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods. Chemometrics and Intelligent Laboratory Systems, 81(2), 137-148.
Févotte, C. and Idier, J. (2011) Algorithms for nonnegative matrix factorization with the beta-divergence. Neural Computation, 23(9), 2421-2456.
Mohammad-Djafari, A. (1999) A Bayesian approach to source separation. American Institute of Physics (AIP) Proceedings, 567, 221-244.
Cichocki, A., Zdunek, R., Phan, A., and Amari, S.I. (2009) Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, Wiley-Blackwell.
Chi, E. and Kolda, T. (2012) On tensors, sparsity, and nonnegative factorizations. SIAM Journal on Matrix Analysis and Applications, 33(4), 1272-1299.
Lawson, C. and Hanson, R. (1974) Solving Least Squares Problems, Prentice-Hall.
Bro, R. (1998) Multi-Way Analysis in the Food Industry: Models, Algorithms, and Applications, Ph.D. thesis, University of Copenhagen.
Ho, N.D. (2008) Nonnegative Matrix Factorization-Algorithms and Applications, Ph.D. thesis, Université catholique de Louvain.
Wild, S., Curry, J., and Dougherty, A. (2004) Improving non-negative matrix factorizations through structured initialization. Pattern Recognition, 37(11), 2217-2232.
Langville, A., Meyer, C., Albright, R., Cox, J., and Duling, D. (2006) Initializations for the nonnegative matrix factorization, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 23-26.
Casalino, G., Del Buono, N., and Mencar, C. (2013) Subtractive clustering for seeding non-negative matrix factorizations. Information Sciences, 257, 369-387.
Boutsidis, C. and Gallopoulos, E. (2008) SVD based initialization: a head start for nonnegative matrix factorization. Pattern Recognition, 41, 1350-1362.
Grippo, L. and Sciandrone, M. (2000) On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Operations Research Letters, 26, 127-136.
Guan, N., Tao, D., Luo, Z., and Yuan, B. (2012) NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Transactions on Signal Processing, 60(6), 2882-2898.
Cichocki, A., Zdunek, R., and Amari, S. (2006) Non-negative Matrix Factorization with Quasi-Newton Optimization, Lecture Notes in Artificial Intelligence, Springer, vol. 4029, pp. 870-879.
Bro, R. and De Jong, S. (1997) A fast non-negativity-constrained least squares algorithm. Journal of Chemometrics, 11(5), 393-401.
Kim, H. and Park, H. (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12), 1495-1502.
Kim, J. and Park, H. (2011) Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM Journal on Scientific Computing, 33(6), 3261-3281.
Chen, D. and Plemmons, R. (2009) Nonnegativity constraints in numerical analysis, in Symposium on the Birth of Numerical Analysis, (eds A. Bultheel and R. Cools), World Scientific Press, pp. 109-139.
Lee, D. and Seung, H. (2001) Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing 13(NIPS '01).
Daube-Witherspoon, M. and Muehllehner, G. (1986) An iterative image space reconstruction algorithm suitable for volume ECT. IEEE Transactions on Medical Imaging, 5, 61-66.
Repetti, A., Chouzenoux, E., and Pesquet, J.C. (2014) A preconditioned forward-backward approach with application to large-scale nonconvex spectral unmixing problems, in Proceedings of the 39th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), Firenze, Italy, pp. 1498-1502.
Gillis, N. and Glineur, F. (2012) Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Computation, 24(4), 1085-1105.
Sha, F., Lin, Y., Saul, L., and Lee, D. (2007) Multiplicative updates for nonnegative quadratic programming. Neural Computation, 19(8), 2004-2031.
Gillis, N. (2014) The why and how of nonnegative matrix factorization, in Regularization, Optimization, Kernels, and Support Vector Machines, Machine Learning and Pattern Recognition Series (eds J. Suykens, M. Signoretto, and A. Argyriou), Chapman & Hall/CRC, pp. 257-291.
Cichocki, A., Zdunek, R., and Amari, S.I. (2007) Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization, Lecture Notes in Computer Science, vol. 4666, Springer, pp. 169-176.
Cichocki, A. and Phan, A. (2009) Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Transactions on Fundamentals of Electronics, E92-A (3), 708-721.
Li, L. and Zhang, Y.J. (2009) FastNMF: highly efficient monotonic fixed-point nonnegative matrix factorization algorithm with good applicability. Journal of Electronic Imaging, 18(3), 033004.
Liu, J., Liu, J., Wonka, P., and Ye, J. (2012) Sparse non-negative tensor factorization using columnwise coordinate descent. Pattern Recognition, 45(1), 649-656.
Hsieh, C.J. and Dhillon, I. (2011) Fast coordinate descent methods with variable selection for non-negative matrix factorization, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1064-1072.
Vandaele, A., Gillis, N., Glineur, F., and Tuyttens, D. (2015) Heuristics for exact nonnegative matrix factorization. Journal of Global Optimization, 65, 369-400.
Kim, J., He, Y., and Park, H. (2013) Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework. Journal of Global Optimization, 58, 285-319.
Zymnis, A., Kim, S.J., Skaf, J., Parente, M., and Boyd, S. (2007) Hyperspectral image unmixing via alternating projected subgradients, in Signals, Systems and Computers, 2007, pp. 1164-1168.
Iordache, M.D., Bioucas-Dias, J., and Plaza, A. (2011) Total variation regulatization in sparse hyperspectral unmixing, in 3rd Worskshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon.
Cai, D., He, X., Han, J., and Huang, T. (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1548-1560.
Rapin, J., Bobin, J., Larue, A., and Starck, J.L. (2013) Sparse and non-negative BSS for noisy data. IEEE Transactions on Signal Processing, 61(22), 5620-5632.
Condat, L. (2015) Fast projection onto the simplex and the Č1 ball. Mathematical Programming, 158, 575-585.
Arora, S., Ge, R., Kannan, R., and Moitra, A. (2012) Computing a nonnegative matrix factorization-provably, in Proceedings of the 44th Symposium on Theory of Computing (STOC '12), pp. 145-162.
Gillis, N. and Vavasis, S. (2015) Semidefinite programming based preconditioning for more robust near-separable nonnegative matrix factorization. SIAM Journal on Optimization, 25(1), 677-698.
Kumar, A. and Sindhwani, V. (2015) Near-separable non-negative matrix factorization with rx-and Bregman loss functions. in SIAM International Conference on Data Mining.
Gillis, N. and Ma, W.K. (2015) Enhancing pure-pixel identification performance via preconditioning. SIAM Journal on Imaging Sciences, 8(2), 1161-1186.
Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., Wu, Y., and Zhu, M. (2013) A practical algorithm for topic modeling with provable guarantees, in International Conference on Machine Learning (ICML '13), vol. 28, pp. 280-288.
Li, Y., Sima, D., Van Cauter, S., Croitor Sava, S., Himmelreich, U., Pi, Y., and Van Huffel, S. (2012) Hierarchical non-negative matrix factorization (hNMF): a tissue pattern differentiation method for glioblastoma multiforme diagnosis using mrsi. NMR in Biomedicine, 26(3), 307-319.
Kuang, D. and Park, H. (2013) Fast rank-2 nonnegative matrix factorization for hierarchical document clustering, in 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '13), pp. 739-747.
Gillis, N., Kuang, D., and Park, H. (2015) Hierarchical clustering of hyperspectral images using rank-two nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 2066-2078.
Gillis, N. (2012) Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13(1), 3349-3386.
Kumar, N., Moussaoui, S., Idier, J., and Brie, D. (2015) Impact of sparse representation on the admissible solutions of spectral unmixing by non-negative matrix factorization, in Proceeding of IEEE Workshop on Hyperspectral Image and Signal Processing (WHISPERS), Tokyo, Japan.
Henrot, S., Soussen, C., Dossot, M., and Brie, D. (2014) Does deblurring improve geometrical hyperspectral unmixing? IEEE Transactions on Image Processing, 23(3), 1169-1180.
Miron, S., Dossot, M., Carteret, C., Margueron, S., and Brie, D. (2011) Joint processing of the parallel and crossed polarized Raman spectra and uniqueness in blind nonnegative source separation. Chemometrics and Intelligent Laboratory Systems, 105(1), 7-18.
Long, D.A. (2002) The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley & Sons.
Turrell, G. (1972) Infrared and Raman spectra of crystals, Academic Press, New York.
Jiménez, C., Caroff, T., Bartasyte, A., Margueron, S., Abrutis, A., Chaix-Pluchery, O., and Weiss, F. (2009) Raman study of CeO2 texture as a buffer layer in the CeO2/La2Zr2O7/NI˙ architecture for coated conductors. Applied spectroscopy, 63(4), 401-406.
Tanaka, M. and Young, R. (2006) Review Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers. Journal of Materials Science, 41(3), 963-991.
Jaumot, J., Menezes, J.C., and Tauler, R. (2006) Quality assessment of the results obtained by multivariate curve resolution analysis of multiple runs of gasoline blending processes. Journal of Chemometrics, 20(1-2), 54-67.
Ruckebusch, C., De Juan, A., Duponchel, L., and Huvenne, J. (2006) Matrix augmentation for breaking rank-deficiency: a case study. Chemometrics and Intelligent Laboratory Systems, 80(2), 209-214.
Lee, D. and Seung, H. (2000) Algorithms for non-negative matrix factorization, in Advances on Neural Information Processing Systems 13, (NIPS'2000), MIT Press, pp. 556-562.
Craig, M. (1994) Minimum-volume transforms for remotely sensed data. IEEE Transactions on Geoscience and Remote Sensing, 32(3), 542-552.
Winter, M. (1999) N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data, in Proceedings of SPIE Conference on Imaging Spectrometry V.
Chang, C.I. (2007) Hyperspectral Data Exploitation. Theory and Applications, Wiley Interscience.
Heinz, D.C. and Chang, C.I. (2001) Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(3), 529-545.
Chouzenoux, E., Legendre, M., Moussaoui, S., and Idier, J. (2014) Fast constrained least squares spectral unmixing using primal-dual interior-point optimization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP (99), 1-11.
Miao, L. and Qi, H. (2007) Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 45(3), 765-777.
Chang, C.I. and Du, Q. (2004) Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 608-619.
Bioucas-Dias, J. and Nascimento, J. (2008) Hyperspectral subspace identification. IEEE Transactions on Geoscience and Remote Sensing, 46(8), 2435-2445.
Abderrahim, H., Honeine, P., Kharouf, M., Richard, C., and Tourneret, J.Y. (2019) Estimating the intrinsic dimension of hyperspectral images using a noise-whitened eigengap approach. IEEE Transactions on Geoscience and Remote Sensing, 54(27), 3811-3821.
Bioucas-Dias, J., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., and Chanussot, J. (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354-379.
Henrot, S., Soussen, C., and Brie, D. (2013) Fast positive deconvolution of hyperspectral images. IEEE Transactions on Image Process, 22(2), 828-833.
De Grauw, C., Sijtsema, N., Otto, C., and Greve, J. (1997) Axial resolution of confocal Raman microscopes: Gaussian beam theory and practice. Journal of Microscopy, 188(3), 273-279.
Wang, L.Y., Zhang, Y.H., and Zhao, L.J. (2005) Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate. The Journal of Physical Chemistry A, 109(4), 609-614.