charge-transport properties; covalent networks; defect engineering; electrical devices; hopping mechanisms; transition metal dichalcogenides; Charge transport mechanisms; Charge transport properties; Covalent network; Device performance; Dichalcogenides; Electronics devices; Hopping mechanism; Materials Science (all); Mechanics of Materials; Mechanical Engineering; General Materials Science
Abstract :
[en] Device performance of solution-processed 2D semiconductors in printed electronics has been limited so far by structural defects and high interflake junction resistance. Covalently interconnected networks of transition metal dichalcogenides potentially represent an efficient strategy to overcome both limitations simultaneously. Yet, the charge-transport properties in such systems have not been systematically researched. Here, the charge-transport mechanisms of printed devices based on covalent MoS2 networks are unveiled via multiscale analysis, comparing the effects of aromatic versus aliphatic dithiolated linkers. Temperature-dependent electrical measurements reveal hopping as the dominant transport mechanism: aliphatic systems lead to 3D variable range hopping, unlike the nearest neighbor hopping observed for aromatic linkers. The novel analysis based on percolation theory attributes the superior performance of devices functionalized with π-conjugated molecules to the improved interflake electronic connectivity and formation of additional percolation paths, as further corroborated by density functional calculations. Valuable guidelines for harnessing the charge-transport properties in MoS2 devices based on covalent networks are provided.
Disciplines :
Chemistry
Author, co-author :
Ippolito, Stefano; ISIS UMR 7006, Université de Strasbourg, CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
Urban, Francesca; ISIS UMR 7006, Université de Strasbourg, CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
Zheng, Wenhao; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
Mazzarisi, Onofrio; Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany
Valentini, Cataldo; ISIS UMR 7006, Université de Strasbourg, CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
Kelly, Adam G; School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2, D02 K8N4, Ireland
Gali, Sai Manoj ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Bonn, Mischa; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
Beljonne, David ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Corberi, Federico; Department of Physics, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
Coleman, Jonathan N; School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2, D02 K8N4, Ireland
Wang, Hai I; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
Samorì, Paolo ; ISIS UMR 7006, Université de Strasbourg, CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
European Commission Agence Nationale de la Recherche Alexander von Humboldt-Stiftung Fonds De La Recherche Scientifique - FNRS
Funding text :
The authors acknowledge funding from the European Commission through the ERC projects SUPRA2DMAT (Grant No. GA‐833707) and FUTURE‐PRINT (Grant No. GA‐694101), the Graphene Flagship Core 3 project (Grant No. GA‐881603), and the Marie Sklodowska‐Curie project ULTIMATE (Grant No. GA‐813036) as well as the Agence Nationale de la Recherche through the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (Grant No. ANR‐10‐IDEX‐0002) within the program Investissement d'Avenir, the International Center for Frontier Research in Chemistry (icFRC) and the Institut Universitaire de France (IUF). O.M. acknowledges the Alexander von Humboldt‐Stiftung in the framework of the Sofja Kovalevskaja Award, endowed by the BMBF, for providing funding for this work. J.N.C. thanks the Science Foundation Ireland (SFI) for support. D.B. thanks the Energy Transition Fund of the Belgian Federal Government (FPS Economy) within the T‐REX project, the Belgian National Fund for Scientific Research (FRS‐FNRS) within the Consortium des Équipements de Calcul Intensif (CÉCI), under Grant No. 2.5020.11, and by the Walloon Region (ZENOBE Tier‐1 supercomputer), under Grant No. 1117545. The authors thank Dr. Andrea Liscio for enlightening discussions.The authors acknowledge funding from the European Commission through the ERC projects SUPRA2DMAT (Grant No. GA-833707) and FUTURE-PRINT (Grant No. GA-694101), the Graphene Flagship Core 3 project (Grant No. GA-881603), and the Marie Sklodowska-Curie project ULTIMATE (Grant No. GA-813036) as well as the Agence Nationale de la Recherche through the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (Grant No. ANR-10-IDEX-0002) within the program Investissement d'Avenir, the International Center for Frontier Research in Chemistry (icFRC) and the Institut Universitaire de France (IUF). O.M. acknowledges the Alexander von Humboldt-Stiftung in the framework of the Sofja Kovalevskaja Award, endowed by the BMBF, for providing funding for this work. J.N.C. thanks the Science Foundation Ireland (SFI) for support. D.B. thanks the Energy Transition Fund of the Belgian Federal Government (FPS Economy) within the T-REX project, the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif (CÉCI), under Grant No. 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer), under Grant No. 1117545. The authors thank Dr. Andrea Liscio for enlightening discussions.
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
M. C. Lemme, D. Akinwande, C. Huyghebaert, C. Stampfer, Nat. Commun. 2022, 13, 1392.
F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A. C. Ferrari, Mater. Today 2012, 15, 564.
Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563.
S. Pinilla, J. Coelho, K. Li, J. Liu, V. Nicolosi, Nat. Rev. Mater. 2022, 7, 717.
S. Bertolazzi, M. Gobbi, Y. Zhao, C. Backes, P. Samorì, Chem. Soc. Rev. 2018, 47, 6845.
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Chem. Soc. Rev. 2018, 47, 3100.
D. Qi, C. Han, X. Rong, X.-W. Zhang, M. Chhowalla, A. T. S. Wee, W. Zhang, ACS Nano 2019, 13, 9464.
S. Ippolito, A. Ciesielski, P. Samorì, Chem. Commun. 2019, 55, 8900.
Y. Wang, Y. Zheng, C. Han, W. Chen, Nano Res. 2021, 14, 1682.
S. Ippolito, P. Samorì, Small Sci. 2022, 2, 2100122.
V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Science 2013, 340, 1226419.
A. G. Kelly, D. O'Suilleabhain, C. Gabbett, J. N. Coleman, Nat. Rev. Mater. 2022, 7, 217.
S. Ippolito, A. G. Kelly, R. Furlan de Oliveira, M.-A. Stoeckel, D. Iglesias, A. Roy, C. Downing, Z. Bian, L. Lombardi, Y. A. Samad, V. Nicolosi, A. C. Ferrari, J. N. Coleman, P. Samorì, Nat. Nanotechnol. 2021, 16, 592.
H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, X. Wang, Nat. Commun. 2013, 4, 2642.
J. Xue, S. Huang, J.-Y. Wang, H. Q. Xu, RSC Adv. 2019, 9, 17885.
J. S. Kim, J. Kim, J. Zhao, S. Kim, J. H. Lee, Y. Jin, H. Choi, B. H. Moon, J. J. Bae, Y. H. Lee, S. C. Lim, ACS Nano 2016, 10, 7500.
E. Piatti, A. Arbab, F. Galanti, T. Carey, L. Anzi, D. Spurling, A. Roy, A. Zhussupbekova, K. A. Patel, J. M. Kim, D. Daghero, R. Sordan, V. Nicolosi, R. S. Gonnelli, F. Torrisi, Nat. Electron. 2021, 4, 893.
R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, M. Bonn, Rev. Mod. Phys. 2011, 83, 543.
W. Zheng, B. Sun, D. Li, S. M. Gali, H. Zhang, S. Fu, L. Di Virgilio, Z. Li, S. Yang, S. Zhou, D. Beljonne, M. Yu, X. Feng, H. I. Wang, M. Bonn, Nat. Phys. 2022, 18, 544.
W. Zheng, N. F. Zorn, M. Bonn, J. Zaumseil, H. I. Wang, ACS Nano 2022, 16, 9401.
W. Zheng, M. Bonn, H. I. Wang, Nano Lett. 2020, 20, 5807.
H. Shi, S. Fu, Y. Liu, C. Neumann, M. Wang, H. Dong, P. Kot, M. Bonn, H. I. Wang, A. Turchanin, O. G. Schmidt, A. Shaygan Nia, S. Yang, X. Feng, Adv. Mater. 2021, 33, 2105694.
N. F. Mott, Metal–Insulator Transitions, Taylor & Francis, London, UK 1990.
N. F. Mott, E. A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, UK 2012.
I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, K. B. Efetov, Rev. Mod. Phys. 2007, 79, 469.
T. Carey, A. Arbab, L. Anzi, H. Bristow, F. Hui, S. Bohm, G. Wyatt-Moon, A. Flewitt, A. Wadsworth, N. Gasparini, J. M. Kim, M. Lanza, I. McCulloch, R. Sordan, F. Torrisi, Adv. Electron. Mater. 2021, 7, 2100112.
T. B. Schrøder, J. C. Dyre, Phys. Rev. Lett. 2000, 84, 310.
D. Yu, C. Wang, B. L. Wehrenberg, P. Guyot-Sionnest, Phys. Rev. Lett. 2004, 92, 216802.
R. Debbarma, N. H. L. Nguyen, V. Berry, Appl. Mater. Today 2021, 23, 101072.
B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semiconductors, Springer, Berlin, Germany 1984.
A. L. Efros, B. I. Shklovskii, J. Phys. C: Solid State Phys. 1975, 8, L49.
J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206.
C.-L. Wu, H. Yuan, Y. Li, Y. Gong, H. Y. Hwang, Y. Cui, Nano Lett. 2018, 18, 2387.
J. He, K. Hummer, C. Franchini, Phys. Rev. B 2014, 89, 075409.
J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, Z. Zhang, Nat. Commun. 2015, 6, 6293.
Y. Sun, X. Wang, X.-G. Zhao, Z. Shi, L. Zhang, J. Semicond. 2018, 39, 072001.
S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, P. Samorì, Adv. Mater. 2017, 29, 1606760.
S. M. Gali, A. Pershin, A. Lherbier, J.-C. Charlier, D. Beljonne, J. Phys. Chem. C 2020, 124, 15076.
J. Li, M. M. Naiini, S. Vaziri, M. C. Lemme, M. Östling, Adv. Funct. Mater. 2014, 24, 6524.
S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, C. D. Frisbie, Adv. Mater. 2013, 25, 1822.
A. G. Kelly, T. Hallam, C. Backes, A. Harvey, A. S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L. D. A. Siebbeles, G. S. Duesberg, J. N. Coleman, Science 2017, 356, 69.
B. Derrida, J. Vannimenus, J. Phys. A: Math. Gen. 1982, 15, L557.
M. van Hecke, J. Phys.: Condens. Matter 2010, 22, 033101.
C. Backes, R. J. Smith, N. McEvoy, N. C. Berner, D. McCloskey, H. C. Nerl, A. O'Neill, P. J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G. S. Duesberg, J. F. Donegan, V. Nicolosi, J. N. Coleman, Nat. Commun. 2014, 5, 4576.
C. Jacoboni, Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions, Springer, New York 2010.
R. Rosenbaum, R. Haberkern, P. Häussler, E. Palm, T. Murphy, S. Hannahs, B. Brandt, J. Phys.: Condens. Matter 2000, 12, 9735.
M. J. M. Jimenez, R. F. Oliveira, T. P. Almeida, R. C. H. Ferreira, C. C. B. Bufon, V. Rodrigues, M. A. Pereira-da-Silva, Â. L. Gobbi, M. H. O. Piazzetta, A. Riul, Nanotechnology 2017, 28, 495711.
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.