Nucleus incertus provides eye velocity and position signals to the vestibulo-ocular cerebellum: a new perspective of the brainstem-cerebellum-hippocampus network.
Cheron, Guy; Ris, Laurence; Cebolla, Ana Maria
2023 • In Frontiers in Systems Neuroscience, 17, p. 1180627
[en] The network formed by the brainstem, cerebellum, and hippocampus occupies a central position to achieve navigation. Multiple physiological functions are implicated in this complex behavior. Among these, control of the eye-head and body movements is crucial. The gaze-holding system realized by the brainstem oculomotor neural integrator (ONI) situated in the nucleus prepositus hypoglossi and fine-tuned by the contribution of different regions of the cerebellum assumes the stability of the image on the fovea. This function helps in the recognition of environmental targets and defining appropriate navigational pathways further elaborated by the entorhinal cortex and hippocampus. In this context, an enigmatic brainstem area situated in front of the ONI, the nucleus incertus (NIC), is implicated in the dynamics of brainstem-hippocampus theta oscillation and contains a group of neurons projecting to the cerebellum. These neurons are characterized by burst tonic behavior similar to the burst tonic neurons in the ONI that convey eye velocity-position signals to the cerebellar flocculus. Faced with these forgotten cerebellar projections of the NIC, the present perspective discusses the possibility that, in addition to the already described pathways linking the cerebellum and the hippocampus via the medial septum, these NIC signals related to the vestibulo-ocular reflex and gaze holding could participate in the hippocampal control of navigation.
Cheron, Guy ; Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Service de Neurosciences ; Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium ; ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
Ris, Laurence ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Neurosciences
Cebolla, Ana Maria; Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium ; ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
Language :
English
Title :
Nucleus incertus provides eye velocity and position signals to the vestibulo-ocular cerebellum: a new perspective of the brainstem-cerebellum-hippocampus network.
R550 - Institut des Sciences et Technologies de la Santé
Funding text :
This work was supported by the Queen Elisabeth Medical Foundation, the Belgian National Fund for Scientific Research (FNRS), the Brain and Society Foundation, and the Leibu Fund of the Université Libre de Bruxelles, and the Fund of the Université de Mons (Belgium).The authors thank D'Angelo, T., Hortmanns, E., Petieau, M., and Toussaint, E., for expert technical assistance, the Queen Elisabeth Medical Foundation, the Belgian National Fund for Scientific Research (FNRS), the Brain and Society Foundation, the Leibu Fund of the Université Libre de Bruxelles, and the Fund of the Université de Mons (Belgium).
Apps R. Hawkes R. Aoki S. Bengtsson F. Brown A. M. Chen G. et al. (2018). Cerebellar modules and their role as operational cerebellar processing units: a consensus paper [corrected]. Cerebellum Lond. Engl. 17, 654–682. 10.1007/s12311-018-0952-329876802
Bohbot V. D. Copara M. S. Gotman J. Ekstrom A. D. (2017). Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat. Commun. 8, 14415. 10.1038/ncomms1441528195129
Boven E. Pemberton J. Chadderton P. Apps R. Costa R. P. (2023). Cerebro-cerebellar networks facilitate learning through feedback decoupling. Nat. Commun. 14, 51. 10.1038/s41467-022-35658-836599827
Burgess N. (2008). Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus. 18, 1157–1174. 10.1002/hipo.2051819021256
Burgess N. Barry C. O'Keefe J. (2007). An oscillatory interference model of grid cell firing. Hippocampus. 17, 801–812. 10.1002/hipo.2032717598147
Burguière E. Arleo A. Hojjati M. reza Elgersma Y. De Zeeuw C. I. Berthoz A. et al. (2005). Spatial nvigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit? Nat. Neurosci. 8, 1292–1294. 10.1038/nn153216136042
Bush D. Bisby J. A. Bird C. M. Gollwitzer S. Rodionov R. Diehl B. et al. (2017). Human hippocampal theta power indicates movement onset and distance travelled. Proc. Natl. Acad. Sci. U. S. A. 114, 12297–12302. 10.1073/pnas.170871611429078334
Buzsáki G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus. 15, 827–840. 10.1002/hipo.2011316149082
Cannon S. C. Robinson D. A. (1987). Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J. Neurophysiol. 57, 1383–1409. 10.1152/jn.1987.57.5.13833585473
Cervera-Ferri A. Guerrero-Martínez J. Bataller-Mompeán M. Taberner-Cortes A. Martínez-Ricós J. Ruiz-Torner A. et al. (2011). Theta synchronization between the hippocampus and the nucleus incertus in urethane-anesthetized rats. Exp. Brain Res. 211, 177–192. 10.1007/s00221-011-2666-321479657
Cervera-Ferri A. Rahmani Y. Martínez-Bellver S. Teruel-Mart,í V. Martínez-Ricós J. (2012). Glutamatergic projection from the nucleus incertus to the septohippocampal system. Neurosci. Lett. 517, 71–76. 10.1016/j.neulet.2012.04.01422521581
Chaisanguanthum K. S. Joshua M. Medina J. F. Bialek W. Lisberger S. G. (2014). The neural code for motor control in the cerebellum and oculomotor brainstem. eNeuro. 1, ENEURO.0004-14.2014. 10.1523/ENEURO.0004-14.201426464956
Cheron G. Dufief M. P. Gerrits N. M. Draye J. P. Godaux E. (1997). Behavioural analysis of Purkinje cell output from the horizontal zone of the cat flocculus. Prog. Brain Res. 114, 347–356. 10.1016/S0079-6123(08)63374-99193154
Cheron G. Escudero M. Godaux E. (1996). Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. I. Medical vestibular nucleus. J. Neurophysiol. 76, 1759–1774. 10.1152/jn.1996.76.3.17598890291
Cheron G. Gillis P. Godaux E. (1986a). Lesions in the cat prepositus complex: effects on the optokinetic system. J. Physiol. 372, 95–111. 10.1113/jphysiol.1986.sp0159993487645
Cheron G. Godaux E. (1987). Disabling of the oculomotor neural integrator by kainic acid injections in the prepositus-vestibular complex of the cat. J. Physiol. 394, 267–290. 10.1113/jphysiol.1987.sp0168703443967
Cheron G. Godaux E. Laune J. M. Vanderkelen B. (1986b). Lesions in the cat prepositus complex: effects on the vestibulo-ocular reflex and saccades. J. Physiol., 372, 75–94. 10.1113/jphysiol.1986.sp0159983487644
Cheron G. Saussez S. Gerrits N. Godaux E. (1995). Existence in the nucleus incertus of the cat of horizontal-eye-movement-related neurons projecting to the cerebellar flocculus. J. Neurophysiol. 74, 1367–1372. 10.1152/jn.1995.74.3.13677500160
Cullen K. E. Galiana H. L. Sylvestre P. A. (2000). Comparing extraocular motoneuron discharges during head-restrained saccades and head-unrestrained gaze shifts. J. Neurophysiol. 83, 630–637. 10.1152/jn.2000.83.1.63010634902
Cullen K. E. Guitton D. (1997). Analysis of primate IBN spike trains using system identification techniques. II. Relationship to gaze, eye, and head movement dynamics during head-free gaze shifts. J. Neurophysiol. 78, 3283–3306. 10.1152/jn.1997.78.6.32839405545
de Waele C. Baudonnière P. M. Lepecq J. C. Tran Ba Huy P. Vidal P. P. (2001). Vestibular projections in the human cortex. Exp. Brain Res. 141, 541–551. 10.1007/s00221-001-0894-711810147
Delgado-García J. M. (2001). [Structure and function of the cerebellum]. Rev. Neurol. 33, 635–642. 10.33588/rn.3307.2001305
Escudero M. Cheron G. Godaux E. (1996). Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. II. Prepositus hypoglossal nucleus. J. Neurophysiol. 76, 1775–1785. 10.1152/jn.1996.76.3.17758890291
Feldman J. L. Mitchell G. S. Nattie E. E. (2003). Breathing: rhythmicity, plasticity, chemosensitivity. Annu. Rev. Neurosci. 26, 239–266. 10.1146/annurev.neuro.26.041002.13110312598679
Fujita H. Kodama T. du Lac S. (2020). Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife. 9, e58613. 10.7554/eLife.58613.sa232639229
Gil-Miravet I. Mañas-Ojeda A. Ros-Bernal F. Castillo-Gómez E. Albert-Gasc,ó H. Gundlach A. L. et al. (2021). Involvement of the nucleus incertus and relaxin-3/RXFP3 signaling system in explicit and implicit memory. Front. Neuroanat. 15, 637922. 10.3389/fnana.2021.63792233867946
Godaux E. Vanderkelen B. (1984). Vestibulo-ocular reflex, optokinetic response and their interactions in the cerebellectomized cat. J. Physiol. 346, 155–170. 10.1113/jphysiol.1984.sp0150136699771
Goyal A. Miller J. Qasim S. E. Watrous A. J. Zhang H. Stein J. M. et al. (2020). Functionally distinct high and low theta oscillations in the human hippocampus. Nat. Commun. 11, 2469. 10.1038/s41467-020-15670-632424312
Hafting T. Fyhn M. Molden S. Moser M.-B. Moser E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature. 436, 801–806. 10.1038/nature0372115965463
Joshua M. Lisberger S. G. (2015). A tale of two species: Neural integration in zebrafish and monkeys. Neuroscience. 296, 80–91. 10.1016/j.neuroscience.2014.04.04824797331
Joshua M. Medina J. F. Lisberger S. G. (2013). Diversity of neural responses in the brainstem during smooth pursuit eye movements constrains the circuit mechanisms of neural integration. J. Neurosci. Off. J. Soc. Neurosci. 33, 6633–6647. 10.1523/JNEUROSCI.3732-12.201323575860
Kaneko C. R. (1997). Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J. Neurophysiol. 78, 1753–1768. 10.1152/jn.1997.78.4.17539325345
Kheradmand A. Zee D. S. (2011). Cerebellum and ocular motor control. Front. Neurol. 2, 53. 10.3389/fneur.2011.0005321909334
Kim G. Laurens J. Yakusheva T. A. Blazquez P. M. (2019). The macaque cerebellar flocculus outputs a forward model of eye movement. Front. Integr. Neurosci. 13, 12. 10.3389/fnint.2019.0001231024268
Kirsch V. Keeser D. Hergenroeder T. Erat O. Ertl-Wagner B. Brandt T. et al. (2016). Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex. Brain Struct. Funct. 221, 1291–1308. 10.1007/s00429-014-0971-x25552315
Kota S. Rugg M. D. Lega B. C. (2020). Hippocampal theta oscillations support successful associative memory formation. J. Neurosci. Off. J. Soc. Neurosci. 40, 9507–9518. 10.1523/JNEUROSCI.0767-20.202033468572
Laurens J. Angelaki D. E. (2020). Simple spike dynamics of Purkinje cells in the macaque vestibulo-cerebellum during passive whole-body self-motion. Proc. Natl. Acad. Sci. U. S. A. 117, 3232–3238. 10.1073/pnas.191587311731988119
Lefort J. M. Vincent J. Tallot L. Jarlier F. De Zeeuw C. I. Rondi-Reig L. et al. (2019). Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation. Nat. Commun. 10, 2251. 10.1038/s41467-019-09958-531113954
Lopez C. Blanke O. (2011). The thalamocortical vestibular system in animals and humans. Brain Res. Rev. 67, 119–146. 10.1016/j.brainresrev.2010.12.00221223979
Lu L. Ren Y. Yu T. Liu Z. Wang S. Tan L. et al. (2020). Control of locomotor speed, arousal, and hippocampal theta rhythms by the nucleus incertus. Nat. Commun. 11, 262. 10.1038/s41467-019-14116-y31937768
Mandolesi L. Leggio M. G. Graziano A. Neri P. Petrosini L. (2001). Cerebellar contribution to spatial event processing: involvement in procedural and working memory components. Eur. J. Neurosci. 14, 2011–2022. 10.1046/j.0953-816x.2001.01819.x11860496
Martínez-Bellver S. Cervera-Ferri A. Luque-García A. Martínez-Ricós J. Valverde-Navarro A. Bataller M. et al. (2017). Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat. J. Physiol. 595, 1775–1792. 10.1113/JP27284127880004
Martínez-Bellver S. Cervera-Ferri A. Martínez-Ricós J. Ruiz-Torner A. Luque-Garcia A. Blasco-Serra A. et al. (2015). Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation. Eur. J. Neurosci. 41, 1049–1067. 10.1111/ejn.1288428191729
Medina J. F. (2019). Teaching the cerebellum about reward. Nat. Neurosci. 22, 846–848. 10.1038/s41593-019-0409-031127257
Nakamagoe K. Iwamoto Y. Yoshida K. (2000). Evidence for brainstem structures participating in oculomotor integration. Science. 288, 857–859. 10.1126/science.288.5467.85710797008
Nakao S. Curthoys I. S. Markham C. H. (1980). Eye movement related neurons in the cat pontine reticular formation: projection to the flocculus. Brain Res. 183, 291–299. 10.1016/0006-8993(80)90465-56965460
Nuñez A. Buño W. (2021). The theta rhythm of the hippocampus: from neuronal and circuit mechanisms to behavior. Front. Cell. Neurosci. 15, 649262. 10.3389/fncel.2021.64926233746716
Nuñez A. Cervera-Ferri A. Olucha-Bordonau F. Ruiz-Torner A. Teruel V. (2006). Nucleus incertus contribution to hippocampal theta rhythm generation. Eur. J. Neurosci. 23, 2731–2738. 10.1111/j.1460-9568.2006.04797.x16817876
O'Keefe J. Burgess N. (2005). Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 15, 853–866. 10.1002/hipo.2011516145693
O'Keefe J. Recce M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 3, 317–330. 10.1002/hipo.4500303078353611
Petrosini L. Molinari M. Dell'Anna M. E. (1996). Cerebellar contribution to spatial event processing: Morris water maze and T-maze. Eur. J. Neurosci. 8, 1882–1896. 10.1111/j.1460-9568.1996.tb01332.x8921279
Richards B. A. Lillicrap T. P. Beaudoin P. Bengio Y. Bogacz R. Christensen A. et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770. 10.1038/s41593-019-0520-231659335
Robinson D. A. (1974). The effect of cerebellectomy on the cat's bestibulo-ocular integrator. Brain Res. 71, 195–207. 10.1016/0006-8993(74)90961-54468058
Robinson D. A. (1989). Integrating with neurons. Annu. Rev. Neurosci. 12, 33–45. 10.1146/annurev.ne.12.030189.0003412648952
Rochefort C. Arabo A. Andr,é M. Poucet B. Save E. Rondi-Reig L. (2011). Cerebellum shapes hippocampal spatial code. Science. 334, 385–389. 10.1126/science.120740322021859
Rondi-Reig L. Paradis A.-L. Fallahnezhad M. (2022). A liaison brought to light: cerebellum-hippocampus, partners for spatial cognition. Cerebellum Lond. Engl. 21, 826–837. 10.1007/s12311-022-01422-335752720
Royer S. Zemelman B. V. Losonczy A. Kim J. Chance F. Magee J. C. et al. (2012). Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775. 10.1038/nn.307722446878
Schmahmann J. D. (1991). An emerging concept. The cerebellar contribution to higher function. Arch. Neurol. 48, 1178–1187. 10.1001/archneur.1991.005302300860291953406
Schmahmann J. D. Guell X. Stoodley C. J. Halko M. A. (2019). The theory and neuroscience of cerebellar cognition. Annu. Rev. Neurosci. 42, 337–364. 10.1146/annurev-neuro-070918-05025830939101
Szonyi A. Sos K. E. Nyilas R. Schlingloff D. Domonkos A. Takács V. T. et al. (2019). Brainstem nucleus incertus controls contextual memory formation. Science. 364, eaaw0445. 10.1126/science.aaw044531123108
Tarnutzer A. A. Weber K. P. Schuknecht B. Straumann D. Marti S. Bertolini G. (2015). Gaze holding deficits discriminate early from late onset cerebellar degeneration. J. Neurol., 262, 1837–1849. 10.1007/s00415-015-7773-925980905
Trenk A. Walczak M. Szlaga A. Pradel K. Blasiak A. Blasiak T. (2022). Bidirectional communication between the pontine nucleus incertus and the medial septum is carried out by electrophysiologically-distinct neuronal populations. J. Neurosci. Off. J. Soc. Neurosci., 42, 2234–2252. 10.1523/JNEUROSCI.0230-21.202235078925
Vivekananda U. Bush D. Bisby J. A. Baxendale S. Rodionov R. Diehl B. et al. (2021). Theta power and theta-gamma coupling support long-term spatial memory retrieval. Hippocampus 31, 213–220. 10.1002/hipo.2328433263940
Watson T. C. Obiang P. Torres-Herraez A. Watilliaux A. Coulon P. Rochefort C. et al. (2019). Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife. 8, e027. 10.7554/eLife.41896.02731205000