IEEE International Workshop on Machine Learning for Signal Processing
Event place :
Londres, United Kingdom
Event date :
22-25 Septembre 202
Audience :
International
Journal title :
IEEE International Workshop on Machine Learning for Signal Processing
ISSN :
2161-0363
eISSN :
2161-0371
Publisher :
Institute of Electrical and Electronic Engineers (IEEE), United States
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F151 - Mathématique et Recherche opérationnelle
Research institute :
R450 - Institut NUMEDIART pour les Technologies des Arts Numériques R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique
European Projects :
HE - 101085607 - eLinoR - Beyond Low-Rank Factorizations
W.-S. Chen, K. Xie, R. Liu, and B. Pan, "Symmetric nonnegative matrix factorization: A systematic review, " Neurocomputing, p. 126721, 2023.
A. Berman and N. Shaked-Monderer, Completely positive matrices, World Scientific, 2003.
X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, "Nonnegative matrix factorization for signal and data analytics: Identifiability, algorithms, and applications., " IEEE Signal Process. Mag., vol. 36, pp. 59-80, 2019.
C. Ding, T. Li, W. Peng, and H. Park, "Orthogonal nonnegative matrix t-factorizations for clustering, " in ACM SIGKDD, 2006, vol. 2006, pp. 126-135.
N. Gillis, Nonnegative Matrix Factorization, SIAM, Philadelphia, 2020.
S. Hoseinipour, M. Aminghafari, and A. Mohammadpour, "Orthogonal parametric non-negative matrix trifactorization with ?-divergence for co-clustering, " Expert Syst. Appl., vol. 231, pp. 120680, 2023.
S. Arora, R. Ge, R. Kannan, and A. Moitra, "Computing a nonnegative matrix factorization-provably, " in ACM Symposium on Theory of Computing, 2012.
F. Pompili, N. Gillis, P.-A. Absil, and F. Glineur, "Two algorithms for orthogonal nonnegative matrix factorization with application to clustering, " Neurocomputing, vol. 141, pp. 15-25, 2014.
M. Aráujo et al., "The successive projections algorithm for variable selection in spectroscopic multicomponent analysis, " Chemom. Intell. Lab. Syst. 57: 65-73, 2001.
N. Nadisic, N. Gillis, and C. Kervazo, "Smoothed separable nonnegative matrix factorization, " Linear Algebra and its Applications, vol. 676, pp. 174-204, 2023.
A. Vandaele, N. Gillis, Q. Lei, K. Zhong, and I. Dhillon, "Efficient and non-convex coordinate descent for symmetric nonnegative matrix factorization, " IEEE Transactions on Signal Processing, vol. 64, pp. 1-1, 11 2016.