[en] Insect pollinators are declining worldwide due to many challenges and several approaches have been implemented to mitigate their loss. Farming with Alternative Pollinators (FAP) uses marketable habitat enhancement plants (MHEP) that yield substantial benefits for farmers from the first year. Studies with small-scale farmers have shown that FAP sustains high diversity and abundance of flower visitors and natural enemies, resulting in significant increases in smallholders' incomes, on average 121% higher. For the first time, we analyzed this approach in large-scale fields. Trials were conducted in 16 farms in two regions of Morocco, Sidi Slimane and Ksar El-Kebir, in 2021. We used melon (Cucumis melo) as the main crop and coriander, anise and sunflower as MHEP and selected in each farm 1 ha as trial area in larger monocultures. We compared FAP and control fields regarding abundance and richness of flower visitors, natural enemies and pests as well as net income of the whole field (1 ha). Flower visitors and natural enemies were significantly more diverse and abundant in FAP fields and there were also fewer pests. Our economic results show 17% higher net income per ha in FAP fields versus control fields in the Ksar El-Kebir region, and 12% higher net income in FAP fields compared to control fields in Sidi Slimane region. Although the mean yield difference was statistically significant, the income difference was not. We suggest more FAP trials are needed in different large-scale fields systems.
Disciplines :
Agriculture & agronomy Entomology & pest control Zoology
Author, co-author :
Bencharki, Youssef ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; International Center of Agricultural Research in Dry Area (ICARDA), Rabat, Morocco
Michez, Denis ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Ihsane, Oumayma; International Center of Agricultural Research in Dry Area (ICARDA), Rabat, Morocco
Reverte saiz, Sara ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
3736 - ICARDA - Contrat de prestation de service avec l'International Center for Agricultural Research in the DryAreas (ICARDA) - Sources publiques supra-européennes
Funding text :
The work is part of an ICARDA project funded by the German Federal Ministry for the Environment, Nature Protection and Nuclear Safety (BMU) within the International Climate Initiative ( IKI, 17_IV_065 ).
Aizen, M.A., Aguiar, S., Biesmeijer, J.C., Garibaldi, L.A., Inouye, D.W., Jung, C., Martins, D.J., Medel, R., Morales, C.L., Ngo, H., Pauw, A., Paxton, R.J., Sáez, A., Seymour, C.L., Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biol. 25:10 (2019), 3516–3527, 10.1111/gcb.14736.
Albrecht, M., Kleijn, D., Williams, N.M., Tschumi, M., Blaauw, B.R., Bommarco, R., Campbell, A.J., Dainese, M., Drummond, F.A., Entling, M.H., Ganser, D., Arjen de Groot, G., Goulson, D., Grab, H., Hamilton, H., Herzog, F., Isaacs, R., Jacot, K., Jeanneret, P., et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23:10 (2020), 1488–1498, 10.1111/ele.13576.
Alignier, A., Solé-Senan, X.O., Robleño, I., Baraibar, B., Fahrig, L., Giralt, D., Gross, N., Martin, J.L., Recasens, J., Sirami, C., Siriwardena, G., Bosem Baillod, A., Bertrand, C., Carrié, R., Hass, A., Henckel, L., Miguet, P., Badenhausser, I., Baudry, J., et al. Configurational crop heterogeneity increases within-field plant diversity. J. Appl. Ecol. 57:4 (2020), 654–663, 10.1111/1365-2664.13585.
Azpiazu, C., Medina, P., Adán, Á., Sánchez-Ramos, I., del Estal, P., Fereres, A., Viñuela, E., The role of annual flowering plant strips on a melon crop in central Spain. Influence on pollinators and crop. Insects, 11(1), 2020, 10.3390/INSECTS11010066.
Bencharki, Y., Christmann, S., Lhomme, P., Ihsane, O., Sentil, A., El-Abdouni, I., Hamroud, L., Rasmont, P., Michez, D., ‘Farming with alternative pollinators’ approach supports diverse and abundant pollinator community in melon fields in a semi-arid landscape Research. Renew. Agric. Food Syst., 1–34, 2022, 10.1017/S1742170522000394.
Bianchi, F.J.J.A., Booij, C.J.H., Tscharntke, T., Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Biol. Sci. 273:1595 (2006), 1715–1727, 10.1098/rspb.2006.3530.
Bisognin, D.A., Origin and evolution of cultivated cucurbits. Ciência Rural. 32:4 (2002), 715–723, 10.1590/s0103-84782002000400028.
Blaauw, B.R., Isaacs, R., Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51:4 (2014), 890–898, 10.1111/1365-2664.12257.
Bonsignore, C.P., Vacante, V., Integrated control of citrus pests in the Mediterranean Region. Natural Enemies, 2012, 66–87 https://doi.org/10.2174/978160805294311201010066.
Breeze, T.D., Boreux, V., Cole, L., Dicks, L., Klein, A.M., Pufal, G., Balzan, M.V., Bevk, D., Bortolotti, L., Petanidou, T., Mand, M., Pinto, M.A., Scheper, J., Stanisavljević, L., Stavrinides, M.C., Tscheulin, T., Varnava, A., Kleijn, D., Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People and Nature 1:4 (2019), 562–572, 10.1002/pan3.10055.
Campbell, A., Wilby, A., Sutton, P., Wäckers, F., Getting more power from your flowers: multi-functional flower strips enhance pollinators and pest control agents in apple orchards. Insects 8:3 (2017), 1–18, 10.3390/insects8030101.
Campbell, A., Wilby, A., Sutton, P., Wäckers, F.L., Do sown fl ower strips boost wild pollinator abundance and pollination services in a spring- fl owering crop ? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 239 (2017), 20–29, 10.1016/j.agee.2017.01.005.
Campbell, J.W., Stanley-Stahr, C., Bammer, M., Daniels, J.C., Ellis, J.D., Contribution of bees and other pollinators to watermelon (Citrullus lanatus Thunb.) pollination. J. Apicult. Res. 58:4 (2019), 597–603, 10.1080/00218839.2019.1614271.
Christmann, S., Pollinator protection strategies must be feasible for all nations. Nature Ecol. Evol. 4:7 (2020), 896–897, 10.1038/s41559-020-1210-x.
Christmann, S., Aw-hassan, A.A., Agriculture, Ecosystems and Environment Farming with alternative pollinators (FAP)— an overlooked win-win-strategy for climate change adaptation. Agric. Ecosyst. Environ. 161:May 1992 (2012), 161–164, 10.1016/j.agee.2012.07.030.
Christmann, S., Aw-Hassan, A., Güler, Y., Sarisu, H.C., Bernard, M., Smaili, M.C., Tsivelikas, A., Two enabling factors for farmer-driven pollinator protection in low- and middle-income countries. Int. J. Agric. Sustain. 20:1 (2021), 54–67, 10.1080/14735903.2021.1916254.
Christmann, S., Aw-Hassan, A., Rajabov, T., Khamraev, A.S., Tsivelikas, A., Farming with alternative pollinators increases yields and incomes of cucumber and sour cherry. Agron. Sustain. Dev., 37(4), 2017, 10.1007/s13593-017-0433-y.
Christmann, S., Bencharki, Y., Anougmar, S., Rasmont, P., Smaili, M.C., Tsivelikas, A., Aw-Hassan, A., Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture. Nature-Sci. Rep. 11:1 (2021), 1–10, 10.1038/s41598-021-97695-5.
Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T.C., Anshary, A., Buchori, D., Cicuzza, D., Darras, K., Dwi Putra, D., Erasmi, S., Pitopang, R., Schmidt, C., Schulze, C.H., Seidel, D., Steffan-Dewenter, I., Stenchly, K., Vidal, S., Weist, M., et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl. Acad. Sci. U.S.A. 108:20 (2011), 8311–8316, 10.1073/pnas.1016799108.
Darwesh, N., Naser, R.S.M., Al-Qawati, M., Raweh, S., El Kharrim, K., Belghyti, D., Groundwater quality in sidi Slimane, Morocco. J. Health and Pollution, 10(25), 2020, 200309, 10.5696/2156-9614-10.25.200309.
El-Abdouni, I., Lhomme, P., Christmann, S., Dorchin, A., Sentil, A., Pauly, A., Hamroud, L., Ihsane, O., Reverté, S., Patiny, S., Wood, T.J., Bencharki, Y., Rasmont, P., Michez, D., Diversity and relative abundance of insect pollinators in Moroccan agroecosystems. Front. Ecol. Evol. 10:July (2022), 1–11, 10.3389/fevo.2022.866581.
FAO. Production - Crops and Livestock Products. 2020, FAO https://www.fao.org/faostat/en/#data/QCL.
Fleshman, M.K., Lester, G.E., Riedl, K.M., Kopec, R.E., Narayanasamy, S., Curley, R.W., Schwartz, S.J., Harrison, E.H., Carotene and novel apocarotenoid concentrations in orange-fleshed cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability. J. Agric. Food Chem. 59:9 (2011), 4448–4454, 10.1021/jf200416a.
Fox, J., Weisberg, S., An R Companion to Applied Regression. third ed., 2019, Sage, Thousand Oaks CA.
Galili, T., O'Callaghan, A., Sidi, J., Sievert, C., Heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34:9 (2018), 1600–1602, 10.1093/bioinformatics/btx657.
Garibaldi, L.A., Steffan-dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A., Kremen, C., Carvalheiro, L.G., Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:May (2014), 1608–1611, 10.1126/science.1230200.
Haenke, S., Kovács-Hostyánszki, A., Fründ, J., Batáry, P., Jauker, B., Tscharntke, T., Holzschuh, A., Landscape configuration of crops and hedgerows drives local syrphid fly abundance. J. Appl. Ecol. 51:2 (2014), 505–513, 10.1111/1365-2664.12221.
Hamdouni, I., Ait Brahim, L., Abdelouafi, A., Importance of conditional independence in choosing the best combination of predictive factors for mapping the susceptibility of the landslide in the Ksar El Kebir northern region_Morocco. Int. J. Eng. Sci. Technol., 5(4), 2018 ISSN 2349-0780.
Hendrickx, F., Maelfait, J.P., Van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., Augenstein, I., Billeter, R., Bailey, D., Bukacek, R., Burel, F., Diekötter, T., Dirksen, J., Herzog, F., Liira, J., Roubalova, M., Vandomme, V., Bugter, R., How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44:2 (2007), 340–351, 10.1111/j.1365-2664.2006.01270.x.
Holland, J.M., Douma, J.C., Crowley, L., James, L., Kor, L., Stevenson, D.R.W., Smith, B.M., Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron. Sustain. Dev., 37(4), 2017, 10.1007/s13593-017-0434-x.
Kassambara, A., Practical Statistics in R II-Comparing Groups: Numerical Variables. 2019, Datanovia https://www.datanovia.com/en.
Kennedy, C.M., Lonsdorf, E., Neel, M.C., Williams, N.M., Ricketts, T.H., Winfree, R., Bommarco, R., Brittain, C., Burley, A.L., Cariveau, D., Carvalheiro, L.G., Chacoff, N.P., Cunningham, S.A., Danforth, B.N., Dudenhöffer, J.H., Elle, E., Gaines, H.R., Garibaldi, L.A., Gratton, C., et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16:5 (2013), 584–599, 10.1111/ele.12082.
Kleijn, D., Bommarco, R., Fijen, T.P.M., Garibaldi, L.A., Potts, S.G., van der Putten, W.H., Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34:2 (2019), 154–166, 10.1016/j.tree.2018.11.002.
Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T., Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274:1608 (2007), 303–313, 10.1098/rspb.2006.3721.
Kremen, C., Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Topics in Life Sci. 4:2 (2020), 229–240, 10.1042/ETLS20190205.
Lahmar, M., El Khodrani, N., Omrania, S., Dakak, H., Moussadek, R., Douaik, A., Iaaich, H., El Azzouzi, M., Mekkaoui, M., Zouahri, A., Assessment of the quality of soil and groundwater of the agricultural area of sidi yahya region, Morocco. E3S Web of Conf. 150:20 20 (2020), 1–7, 10.1051/e3sconf/202015001001.
Lhomme, P., Denis, M., Stefanie, C., Erwin, S., Insafe, E.A., Laila, H., Oumayma, I., Ahlam, S., Chrif, Moulay, Smaili Maximilian, S., Holger, H.D., Jakub, S., Alain, P., Christian, Schmid-egger Sebastien, P., John, S.A., Pierre, R., The wild bees (Hymenoptera: apoidea) of Morocco. Zootaxa 4892:1 (2020), 1–159.
Marshall, E.J.P., Moonen, A.C., Field margins in northern Europe: their functions and interactions with agriculture. Agric. Ecosyst. Environ. 89:1–2 (2002), 5–21, 10.1016/S0167-8809(01)00315-2.
Marshall, E.J.P., West, T.M., Kleijn, D., Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric. Ecosyst. Environ. 113:1–4 (2006), 36–44, 10.1016/j.agee.2005.08.036.
Martin, E.A., Reineking, B., Seo, B., Steffan-Dewenter, I., Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl. Acad. Sci. U.S.A. 110:14 (2013), 5534–5539, 10.1073/pnas.1215725110.
Michez, D., Rasmont, P., Terzo, M., Vereecken, Bees of Europe, Vol. 1, 2019, NAP Editions, Paris, France 978-2-913688-34-6.
Mistral, P., Vanlerberghe-Masutti, F., Elbelt, S., Boissot, N., Aphis gossypii/Aphis frangulae collected worldwide: microsatellite markers data and genetic cluster assignment. Data Brief, 36, 2021, 106967, 10.1016/j.dib.2021.106967.
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M. De, Durand, S., Weedon, J., Vegan: Community Ecology Package. R package Version 2.4-3. 2022 https://github.com/vegandevs/vegan.
Östman, Ö., The relative effects of natural enemy abundance and alternative prey abundance on aphid predation rates. Biol. Control 30:2 (2004), 281–287, 10.1016/j.biocontrol.2004.01.015.
Östman, Ö., Ekbom, B., Bengtsson, J., Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol. Econ. 45:1 (2003), 149–158, 10.1016/S0921-8009(03)00007-7.
Pallant, J., A step by step guide to data analysis using IBM SPSS. Automotive Industries, 181, 4, 2016.
Pérez-Marcos, M., Ortiz-Sánchez, F.J., López-Gallego, E., Ibáñez, H., Carrasco, A., Sanchez, J.A., Effects of managed and unmanaged floral margins on pollination services and production in melon crops. Insects 14:3 (2023), 1–16, 10.3390/insects14030296.
Poggio, S.L., Chaneton, E.J., Ghersa, C.M., The arable plant diversity of intensively managed farmland: effects of field position and crop type at local and landscape scales. Agric. Ecosyst. Environ. 166 (2013), 55–64, 10.1016/j.agee.2012.01.013.
Pudasaini, R., Chalise, M., Poudel, P.R., Pudasaini, K., Pragya, A., Effect of climate change on insect pollinator. Int. J. Curr. Microbiol. Appl. Sci. 9:2 (2015), 1667–1672, 10.20546/ijcmas.2020.902.192.
Quinn, N.F., Brainard, D.C., Szendrei, Z., Floral strips attract beneficial insects but do not enhance yield in cucumber fields. J. Econ. Entomol. 110:2 (2017), 517–524 https://doi.org/10.1093/jee/tow306.
Quintero, C., Morales, C.L., Aizen, M.A., Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodivers. Conserv. 19:1 (2010), 257–274, 10.1007/s10531-009-9720-5.
Ricketts, T.H., Regetz, J., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S.S., Klein, A.M., Mayfield, M.M., Morandin, L.A., Ochieng’, A., Viana, B.F., Landscape effects on crop pollination services: are there general patterns?. Ecol. Lett. 11:5 (2008), 499–515, 10.1111/j.1461-0248.2008.01157.x.
Rodrigo Gómez, S., Ornosa, C., Selfa, J., Guara, M., Polidori, C., Small sweat bees (Hymenoptera: halictidae) as potential major pollinators of melon (Cucumis melo) in the Mediterranean. Entomol. Sci. 19:1 (2016), 55–66, 10.1111/ens.12168.
Sardiñas, H.S., Kremen, C., Pollination services from field-scale agricultural diversification may be context-dependent. Agric. Ecosyst. Environ. 207 (2015), 17–25, 10.1016/j.agee.2015.03.020.
Schoeny, A., Lauvernay, A., Lambion, J., Mazzia, C., The beauties and the bugs : a scenario for designing flower strips adapted to aphid management in melon crops. Biol. Control, 136, 2019, 103986, 10.1016/j.biocontrol.2019.05.005.
Sentil, A., Lhomme, P., Michez, D., Reverté, S., Rasmont, P., Christmann, S., "Farming with Alternative Pollinators” approach increases pollinator abundance and diversity in faba bean fields. J. Insect Conserv. 26 (2021), 401–414 https://doi.org/10.1007/s10841-021-00351-6.
Sentil, A., Reverté, S., Lhomme, P., Bencharki, Y., Rasmont, P., Christmann, S., Michez, D., “Farming with Alternative Pollinators” approach increases pollinator abundance and diversity in faba bean fields. J. Insect Conserv. 26:3 (2022), 401–414, 10.1007/s10841-021-00351-6.
Sentil, A., Wood, T.J., Lhomme, P., Hamroud, L., El Abdouni, I., Ihsane, O., Bencharki, Y., Rasmont, P., Christmann, S., Michez, D., Impact of the “farming with alternative pollinators” approach on crop pollinator pollen diet. Front. Ecol. Evol., 10(March), 2022, 10.3389/fevo.2022.824474.
Singh, A.K., Saver, N., Jat, G.S., Singh, J., Singh, V., Singh, A., Kumar, A., Influence of spacing and pruning on growth, yield and economics of off-season long melon (Cucumis melo). Indian J. Agric. Sci. 92:2 (2022), 185–189, 10.56093/ijas.v92i2.122212.
Subedi, B., Poudel, A., Aryal, S., The impact of climate change on insect pest biology and ecology: implications for pest management strategies, crop production, and food security. J. Agric. Food Res., 14(July), 2023, 100733, 10.1016/j.jafr.2023.100733.
Sutherland, J.P., Sullivan, M.S., Poppy, G.M., Distribution and abundance of aphidophagous hoverflies (Diptera: Syrphidae) in wildflower patches and field margin habitats. Agric. For. Entomol. 3:1 (2001), 57–64, 10.1046/j.1461-9563.2001.00090.x.
Tscharntke, T., Tylianakis, J.M., Rand, T.A., Didham, R.K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T.O., Dormann, C.F., Ewers, R.M., Fründ, J., Holt, R.D., Holzschuh, A., Klein, A.M., Kleijn, D., Kremen, C., Landis, D.A., Laurance, W., et al. Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol. Rev. 87:3 (2012), 661–685, 10.1111/j.1469-185X.2011.00216.x.
Tsvetkov, N., Samson-Robert, O., Sood, K., Patel, H.S., Malena, D.A., Gajiwala, P.H., Maciukiewicz, P., Fournier, V., Zayed, A., Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356:6345 (2017), 1395–1397 https://doi.org/10.1126/science.aam7470.
Vialatte, A., Tsafack, N., Hassan, D. Al, Duflot, R., Plantegenest, M., Ouin, A., Villenave-Chasset, J., Ernoult, A., Landscape potential for pollen provisioning for beneficial insects favours biological control in crop fields. Landsc. Ecol. 32:3 (2017), 465–480, 10.1007/s10980-016-0481-8.
Vincente, A.R., Manganaris, G.A., Ortiz, C.M., Sozzi, G.O., Crisosto, C.H., Nutritional quality of fruits and vegetables. Postharvest Handling: A Systems Approach (Issue April), 2014, Elsevier Inc, 10.1016/B978-0-12-408137-6.00005-3.
Westphal, C., Bommarco, R., Carré, G., Lamborn, E., Morison, N., Petanidou, T., Potts, S.G., Roberts, S.P.M., Szentgyörgyi, H., Tscheulin, T., Vaissière, B.E., Woyciechowski, M., Biesmeuer, J.C., Kunin, W.E., Settele, J., Steffan-Dewenter, I., Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78:4 (2008), 653–671, 10.1890/07-1292.1.
Zattara, E.E., Aizen, M.A., Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4:1 (2021), 114–123, 10.1016/j.oneear.2020.12.005.