[en] Polystyrene (PS) is a thermoplastic polymer commonly used in various applications due to its bulk properties. Designing functional polystyrenes with well-defined structures for targeted applications is of significant interest due to the rigid and apolar nature of the polymer chain. Progress is hindered to date by the limitations of current analytical methods in defining the atomistic-level folding of the polymer chain. The integration of ion mobility spectrometry and molecular dynamics simulations is beneficial in addressing these challenges. However, data on gas-phase polystyrene ions are rarely reported in the literature. We herein investigate the gas phase structure of polystyrene ions with different end groups to establish how the nature and the rigidity of the monomer unit affect the charge stabilization. We find that, in contrast to polar polymers in which the charges are located deep in the ionic globules, the charges in the PS ions are rather located at the periphery of the polymer backbone, leading to singly and doubly charged PS ions adopting dense elliptic-shaped structures. Molecular dynamics (MD) simulations indicate that the folding of the PS rigid chain is controlled by phenyl ring interactions with the charge ultimately remaining excluded from the core of the globular ions, whereas the folding of polyether ions is initiated by the folding of the flexible polyether chain around the sodium ion that remains deeply enclosed in the core of the ions.
Disciplines :
Chemistry
Author, co-author :
Naskar, Sarajit ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques ; Center for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
Minoia, Andrea; Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
DUEZ, Quentin ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Izuagbe, Aidan; Center for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
DE WINTER, Julien ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Blanksby, Stephen J ; Center for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
Barner-Kowollik, Christopher ; Center for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
Cornil, Jérôme ; Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
GERBAUX, Pascal ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
Language :
English
Title :
Polystyrene Chain Geometry Probed by Ion Mobility Mass Spectrometry and Molecular Dynamics Simulations.
Publication date :
02 October 2024
Journal title :
Journal of the American Society for Mass Spectrometry
S836 - Synthèse et spectrométrie de masse organiques S817 - Chimie des matériaux nouveaux
Research institute :
Biosciences Matériaux
Funders :
Centre for Materials Science, Queensland University of Technology Université de Mons F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The S2MOs lab is grateful to the \u201CFonds National de la Recherche Scientifique (FRS-FNRS)\u201D for financial support for the acquisition of the Waters Synapt G2-Si mass spectrometer. S.N. thanks UMONS and QUT for his Ph.D. thesis grant. Computational resources have been provided by the Consortium des E\u0301quipements de Calcul Intensif (CE\u0301CI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant no. 2.5020.11 and by the Walloon Region (ZENOBE and LUCIA Tier-1 supercomputers). Q.D. and J.C. are FNRS research fellows. C.B.-K. and S.B. acknowledge continued support from the Queensland University of Technology (QUT) and its Centre for Materials Science.The SMOs lab is grateful to the \u201CFonds National de la Recherche Scientifique (FRS-FNRS)\u201D for financial support for the acquisition of the Waters Synapt G2-Si mass spectrometer. S.N. thanks UMONS and QUT for his Ph.D. thesis grant. Computational resources have been provided by the Consortium des E\u0301quipements de Calcul Intensif (CE\u0301CI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant no. 2.5020.11 and by the Walloon Region (ZENOBE and LUCIA Tier-1 supercomputers). Q.D. and J.C. are FNRS research fellows. C.B.-K. and S.B. acknowledge continued support from the Queensland University of Technology (QUT) and its Centre for Materials Science.
Steinkoenig, J.; Cecchini, M. M.; Reale, S.; Goldmann, A. S.; Barner-Kowollik, C. Supercharging Synthetic Polymers: Mass Spectrometric Access to Nonpolar Synthetic Polymers. Macromolecules 2017, 50 ( 20), 8033- 8041, 10.1021/acs.macromol.7b02018
Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted Ultraviolet Laser Desorption of Non-Volatile Compounds. International Journal of Mass Spectrometry and Ion Processes 1987, 78, 53- 68, 10.1016/0168-1176(87)87041-6
Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Da. Anal. Chem. 1988, 60 ( 20), 2299- 2301, 10.1021/ac00171a028
Van Berkel, W. J. H.; Van Den Heuvel, R. H. H.; Versluis, C.; Heck, A. J. R. Detection of Intact megaDalton Protein Assemblies of Vanillyl-alcohol Oxidase by Mass Spectrometry. Protein Sci. 2000, 9 ( 3), 435- 439, 10.1110/ps.9.3.435
Hanton, S. D. Mass Spectrometry of Polymers and Polymer Surfaces. Chem. Rev. 2001, 101 ( 2), 527- 570, 10.1021/cr9901081
De Bruycker, K.; Welle, A.; Hirth, S.; Blanksby, S. J.; Barner-Kowollik, C. Mass Spectrometry as a Tool to Advance Polymer Science. Nat. Rev. Chem. 2020, 4 ( 5), 257- 268, 10.1038/s41570-020-0168-1
Montaudo, M. S. Mass Spectra of Copolymers. Mass Spectrom. Rev. 2002, 21 ( 2), 108- 144, 10.1002/mas.10021
Wesdemiotis, C.; Williams-Pavlantos, K. N.; Keating, A. R.; McGee, A. S.; Bochenek, C. Mass Spectrometry of Polymers: A Tutorial Review. Mass Spectrom. Rev. 2024, 43, 427- 476, 10.1002/mas.21844
Crecelius, A. C.; Becer, C. R.; Knop, K.; Schubert, U. S. Block Length Determination of the Block Copolymer mPEG- b -PS Using MALDI-TOF MS/MS. J. Polym. Sci. A Polym. Chem. 2010, 48 ( 20), 4375- 4384, 10.1002/pola.24223
Weidner, S. M.; Trimpin, S. Mass Spectrometry of Synthetic Polymers. Anal. Chem. 2010, 82 ( 12), 4811- 4829, 10.1021/ac101080n
Crotty, S.; Gerişlioğlu, S.; Endres, K. J.; Wesdemiotis, C.; Schubert, U. S. Polymer Architectures via Mass Spectrometry and Hyphenated Techniques: A Review. Anal. Chim. Acta 2016, 932, 1- 21, 10.1016/j.aca.2016.05.024
Charles, L.; Chendo, C.; Poyer, S. Ion Mobility Spectrometry-Mass Spectrometry Coupling for Synthetic Polymers. Rapid Commun. Mass Spectrom. 2020, 34 ( S2), e8624 10.1002/rcm.8624
Jackson, A. T.; Scrivens, J. H.; Williams, J. P.; Baker, E. S.; Gidden, J.; Bowers, M. T. Microstructural and Conformational Studies of Polyether Copolymers. Int. J. Mass Spectrom. 2004, 238 ( 3), 287- 297, 10.1016/j.ijms.2004.09.025
McEwen, C. N.; Peacock, P. M. Mass Spectrometry of Chemical Polymers. Anal. Chem. 2002, 74 ( 12), 2743- 2748, 10.1021/ac020214u
Weidner, S. M.; Trimpin, S. Mass Spectrometry of Synthetic Polymers. Anal. Chem. 2008, 80 ( 12), 4349- 4361, 10.1021/ac8006413
Ito, K.; Kitagawa, S.; Ohtani, H. Analysis of Multiply Charged Poly(Ethylene Oxide-Co-Propylene Oxide) Using Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry. ANAL. SCI. 2019, 35 ( 2), 169- 174, 10.2116/analsci.18P332
Austin, C. A.; Inutan, E. D.; Bohrer, B. C.; Li, J.; Fischer, J. L.; Wijerathne, K.; Foley, C. D.; Lietz, C. B.; Woodall, D. W.; Imperial, L. F.; Clemmer, D. E.; Trimpin, S.; Larsen, B. S. Resolving Isomers of Star-Branched Poly(Ethylene Glycols) by IMS-MS Using Multiply Charged Ions. J. Am. Soc. Mass Spectrom. 2021, 32 ( 1), 21- 32, 10.1021/jasms.0c00045
Hoskins, J. N.; Trimpin, S.; Grayson, S. M. Architectural Differentiation of Linear and Cyclic Polymeric Isomers by Ion Mobility Spectrometry-Mass Spectrometry. Macromolecules 2011, 44 ( 17), 6915- 6918, 10.1021/ma2012046
Foley, C. D.; Zhang, B.; Alb, A. M.; Trimpin, S.; Grayson, S. M. Use of Ion Mobility Spectrometry-Mass Spectrometry to Elucidate Architectural Dispersity within Star Polymers. ACS Macro Lett. 2015, 4 ( 7), 778- 782, 10.1021/acsmacrolett.5b00299
Morsa, D.; Defize, T.; Dehareng, D.; Jérôme, C.; De Pauw, E. Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Anal. Chem. 2014, 86 ( 19), 9693- 9700, 10.1021/ac502246g
Liénard, R.; Duez, Q.; Grayson, S. M.; Gerbaux, P.; Coulembier, O.; De Winter, J. Limitations of Ion Mobility Spectrometry-mass Spectrometry for the Relative Quantification of Architectural Isomeric Polymers: A Case Study. Rapid Commun. Mass Spectrom. 2020, 34 ( S2), e8660 10.1002/rcm.8660
Trimpin, S.; Clemmer, D. E. Ion Mobility Spectrometry/Mass Spectrometry Snapshots for Assessing the Molecular Compositions of Complex Polymeric Systems. Anal. Chem. 2008, 80 ( 23), 9073- 9083, 10.1021/ac801573n
Tintaru, A.; Chendo, C.; Wang, Q.; Viel, S.; Quéléver, G.; Peng, L.; Posocco, P.; Pricl, S.; Charles, L. Conformational Sensitivity of Conjugated Poly(Ethylene Oxide)-Poly(Amidoamine) Molecules to Cations Adducted upon Electrospray Ionization-A Mass Spectrometry, Ion Mobility and Molecular Modeling Study. Anal. Chim. Acta 2014, 808, 163- 174, 10.1016/j.aca.2013.08.030
Snyder, S. R.; Wesdemiotis, C. Elucidation of Low Molecular Weight Polymers in Vehicular Engine Deposits by Multidimensional Mass Spectrometry. Energy Fuels 2021, 35 ( 2), 1691- 1700, 10.1021/acs.energyfuels.0c02702
Duez, Q.; Moins, S.; Coulembier, O.; De Winter, J.; Cornil, J.; Gerbaux, P. Assessing the Structural Heterogeneity of Isomeric Homo and Copolymers: An Approach Combining Ion Mobility Mass Spectrometry and Molecular Dynamics Simulations. J. Am. Soc. Mass Spectrom. 2020, 31 ( 11), 2379- 2388, 10.1021/jasms.0c00352
Baker, E. S.; Gidden, J.; Simonsick, W. J.; Grady, M. C.; Bowers, M. T. Sequence Dependent Conformations of Glycidyl Methacrylate/Butyl Methacrylate Copolymers in the Gas Phase. Int. J. Mass Spectrom. 2004, 238 ( 3), 279- 286, 10.1016/j.ijms.2004.04.020
Amalian, J.-A.; Cavallo, G.; Al Ouahabi, A.; Lutz, J.-F.; Charles, L. Revealing Data Encrypted in Sequence-Controlled Poly(Alkoxyamine Phosphodiester)s by Combining Ion Mobility with Tandem Mass Spectrometry. Anal. Chem. 2019, 91 ( 11), 7266- 7272, 10.1021/acs.analchem.9b00813
Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. The Power of Ion Mobility-Mass Spectrometry for Structural Characterization and the Study of Conformational Dynamics. Nature Chem. 2014, 6 ( 4), 281- 294, 10.1038/nchem.1889
De Winter, J.; Lemaur, V.; Ballivian, R.; Chirot, F.; Coulembier, O.; Antoine, R.; Lemoine, J.; Cornil, J.; Dubois, P.; Dugourd, P.; Gerbaux, P. Size Dependence of the Folding of Multiply Charged Sodium Cationized Polylactides Revealed by Ion Mobility Mass Spectrometry and Molecular Modelling. Chem.─Eur. J. 2011, 17 ( 35), 9738- 9745, 10.1002/chem.201100383
Smith, D. P.; Knapman, T. W.; Campuzano, I.; Malham, R. W.; Berryman, J. T.; Radford, S. E.; Ashcroft, A. E. Deciphering Drift Time Measurements from Travelling Wave Ion Mobility Spectrometry-Mass Spectrometry Studies. Eur. J. Mass Spectrom (Chichester) 2009, 15 ( 2), 113- 130, 10.1255/ejms.947
Haler, J. R. N.; Far, J.; Aqil, A.; Claereboudt, J.; Tomczyk, N.; Giles, K.; Jérôme, C.; De Pauw, E. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(Acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28 ( 11), 2492- 2499, 10.1007/s13361-017-1769-x
Haler, J. R. N.; Lemaur, V.; Far, J.; Kune, C.; Gerbaux, P.; Cornil, J.; De Pauw, E. Sodium Coordination and Protonation of Poly(Ethoxy Phosphate) Chains in the Gas Phase Probed by Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31 ( 3), 633- 641, 10.1021/jasms.9b00079
Haler, J. R. N.; Far, J.; De La Rosa, V. R.; Kune, C.; Hoogenboom, R.; De Pauw, E. Using Ion Mobility-Mass Spectrometry to Extract Physicochemical Enthalpic and Entropic Contributions from Synthetic Polymers. J. Am. Soc. Mass Spectrom. 2021, 32 ( 1), 330- 339, 10.1021/jasms.0c00349
Haler, J. R. N.; Béchet, E.; Kune, C.; Far, J.; De Pauw, E. Geometric Analysis of Shapes in Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2022, 33 ( 2), 273- 283, 10.1021/jasms.1c00266
Gidden, J.; Wyttenbach, T.; Jackson, A. T.; Scrivens, J. H.; Bowers, M. T. Gas-Phase Conformations of Synthetic Polymers: Poly(Ethylene Glycol), Poly(Propylene Glycol), and Poly(Tetramethylene Glycol). J. Am. Chem. Soc. 2000, 122 ( 19), 4692- 4699, 10.1021/ja993096+
Gidden, J.; Jackson, A. T.; Scrivens, J. H.; Bowers, M. T. Gas Phase Conformations of Synthetic Polymers: Poly (Methyl Methacrylate) Oligomers Cationized by Sodium Ions. Int. J. Mass Spectrom. 1999, 188 ( 1-2), 121- 130, 10.1016/S1387-3806(98)14287-2
Lee, J. W.; Davidson, K. L.; Bush, M. F.; Kim, H. I. Collision Cross Sections and Ion Structures: Development of a General Calculation Method via High-Quality Ion Mobility Measurements and Theoretical Modeling. Analyst 2017, 142 ( 22), 4289- 4298, 10.1039/C7AN01276D
Von Helden, G.; Wyttenbach, T.; Bowers, M. T. Conformation of Macromolecules in the Gas Phase: Use of Matrix-Assisted Laser Desorption Methods in Ion Chromatography. Science 1995, 267 ( 5203), 1483- 1485, 10.1126/science.267.5203.1483
Ude, S.; Fernández De La Mora, J.; Thomson, B. A. Charge-Induced Unfolding of Multiply Charged Polyethylene Glycol Ions. J. Am. Chem. Soc. 2004, 126 ( 38), 12184- 12190, 10.1021/ja0381306
Trimpin, S.; Plasencia, M.; Isailovic, D.; Clemmer, D. E. Resolving Oligomers from Fully Grown Polymers with IMS-MS. Anal. Chem. 2007, 79 ( 21), 7965- 7974, 10.1021/ac071575i
Alessi, M. L.; Norman, A. I.; Knowlton, S. E.; Ho, D. L.; Greer, S. C. Helical and Coil Conformations of Poly(Ethylene Glycol) in Isobutyric Acid and Water. Macromolecules 2005, 38 ( 22), 9333- 9340, 10.1021/ma051339e
Tonelli, A. E. PLLA in Solution: A Flexible Random-Coil or an Extended, Rather Rigid Helical Polymer. Macromolecules 2014, 47 ( 17), 6141- 6143, 10.1021/ma501576u
Hudgins, R. R.; Jarrold, M. F. Helix Formation in Unsolvated Alanine-Based Peptides: Helical Monomers and Helical Dimers. J. Am. Chem. Soc. 1999, 121 ( 14), 3494- 3501, 10.1021/ja983996a
Wang, D.; Chen, K.; Kulp, J. L.; Arora, P. S. Evaluation of Biologically Relevant Short α-Helices Stabilized by a Main-Chain Hydrogen-Bond Surrogate. J. Am. Chem. Soc. 2006, 128 ( 28), 9248- 9256, 10.1021/ja062710w
Jas, G. S.; Kuczera, K. Equilibrium Structure and Folding of a Helix-Forming Peptide: Circular Dichroism Measurements and Replica-Exchange Molecular Dynamics Simulations. Biophys. J. 2004, 87 ( 6), 3786- 3798, 10.1529/biophysj.104.045419
Kohtani, M.; Jarrold, M. F.; Wee, S.; O’Hair, R. A. J. Metal Ion Interactions with Polyalanine Peptides. J. Phys. Chem. B 2004, 108 ( 19), 6093- 6097, 10.1021/jp049708g
Hudgins, R. R.; Mao, Y.; Ratner, M. A.; Jarrold, M. F. Conformations of GlynH+ and AlanH+ Peptides in the Gas Phase. Biophys. J. 1999, 76 ( 3), 1591- 1597, 10.1016/S0006-3495(99)77318-2
Itagaki, H.; Yoshida, N.; Sano, T.; Yokoyama, M.; Iba, N.; Sugiyama, R.; Kuroki, M. Electrically Conductive Gels Prepared from Syndiotactic Polystyrene and an Ionic Liquid. ACS Omega 2019, 4 ( 14), 16125- 16129, 10.1021/acsomega.9b02310
Zatorska-Płachta, M.; Łazarski, G.; Maziarz, U.; Foryś, A.; Trzebicka, B.; Wnuk, D.; Chołuj, K.; Karewicz, A.; Michalik, M.; Jamróz, D.; Kepczynski, M. Encapsulation of Curcumin in Polystyrene-Based Nanoparticles─Drug Loading Capacity and Cytotoxicity. ACS Omega 2021, 6 ( 18), 12168- 12178, 10.1021/acsomega.1c00867
Burguière, C.; Dourges, M.-A.; Charleux, B.; Vairon, J.-P. Synthesis and Characterization of ω-Unsaturated Poly(Styrene- b - n -Butyl Methacrylate) Block Copolymers Using TEMPO-Mediated Controlled Radical Polymerization. Macromolecules 1999, 32 ( 12), 3883- 3890, 10.1021/ma982037y
Ladavière, C.; Lacroix-Desmazes, P.; Delolme, F. First Systematic MALDI/ESI Mass Spectrometry Comparison to Characterize Polystyrene Synthesized by Different Controlled Radical Polymerizations. Macromolecules 2009, 42 ( 1), 70- 84, 10.1021/ma8013788
Gruendling, T.; Hart-Smith, G.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Enhanced Ionization in Electrospray Ionization Mass Spectrometry of Labile End-Group-Containing Polystyrenes Using Silver(I) Tetrafluoroborate as Doping Salt. Macromolecules 2008, 41 ( 6), 1966- 1971, 10.1021/ma702163v
Altintas, O.; Josse, T.; De Winter, J.; Matsumoto, N. M.; Gerbaux, P.; Wilhelm, M.; Barner-Kowollik, C. Ready Access to End-Functional Polystyrenes via a Combination of ARGET ATRP and Thiol-Ene Chemistry. Polym. Chem. 2015, 6 ( 39), 6931- 6935, 10.1039/C5PY01048A
Gidden, J.; Bowers, M. T.; Jackson, A. T.; Scrivens, J. H. Gas-Phase Conformations of Cationized Poly(Styrene) Oligomers. J. Am. Soc. Mass Spectrom. 2002, 13 ( 5), 499- 505, 10.1016/S1044-0305(02)00367-7
Izuagbe, A. E.; Truong, V. X.; Tuten, B. T.; Roesky, P. W.; Barner-Kowollik, C. Visible Light Switchable Single-Chain Nanoparticles. Macromolecules 2022, 55 ( 20), 9242- 9248, 10.1021/acs.macromol.2c01467
Gerber, J.; Radke, W. Topological Separation of Linear and Star-Shaped Polystyrenes by off-Line 2D Chromatography. Stars Having High Molar Mass Arms and Quantification of the Star Fraction. Polymer 2005, 46 ( 22), 9224- 9229, 10.1016/j.polymer.2005.07.038
Duez, Q.; Chirot, F.; Liénard, R.; Josse, T.; Choi, C.; Coulembier, O.; Dugourd, P.; Cornil, J.; Gerbaux, P.; De Winter, J. Polymers for Traveling Wave Ion Mobility Spectrometry Calibration. J. Am. Soc. Mass Spectrom. 2017, 28 ( 11), 2483- 2491, 10.1007/s13361-017-1762-4
Gabelica, V.; Shvartsburg, A. A.; Afonso, C.; Barran, P.; Benesch, J. L. P.; Bleiholder, C.; Bowers, M. T.; Bilbao, A.; Bush, M. F.; Campbell, J. L.; Campuzano, I. D. G.; Causon, T.; Clowers, B. H.; Creaser, C. S.; De Pauw, E.; Far, J.; Fernandez-Lima, F.; Fjeldsted, J. C.; Giles, K.; Groessl, M.; Hogan, C. J.; Hann, S.; Kim, H. I.; Kurulugama, R. T.; May, J. C.; McLean, J. A.; Pagel, K.; Richardson, K.; Ridgeway, M. E.; Rosu, F.; Sobott, F.; Thalassinos, K.; Valentine, S. J.; Wyttenbach, T. Recommendations for Reporting Ion Mobility Mass Spectrometry Measurements. Mass Spectrom. Rev. 2019, 38 ( 3), 291- 320, 10.1002/mas.21585
Materials Studio; BIOVIA - Dassault Systèmes: San Diego, 2022.
Pugh, T. L.; Heller, W. Density of Polystyrene and Polyvinyltoluene Latex Particles. Journal of Colloid Science 1957, 12 ( 2), 173- 180, 10.1016/0095-8522(57)90004-1
Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential. J. Phys. Chem. 1996, 100 ( 40), 16082- 16086, 10.1021/jp961623v
Ewing, S. A.; Donor, M. T.; Wilson, J. W.; Prell, J. S. Collidoscope: An Improved Tool for Computing Collisional Cross-Sections with the Trajectory Method. J. Am. Soc. Mass Spectrom. 2017, 28 ( 4), 587- 596, 10.1007/s13361-017-1594-2
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R., Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. Gaussian2009; Gaussian, Inc., 2009.
Duez, Q.; Van Huizen, N. A.; Lemaur, V.; De Winter, J.; Cornil, J.; Burgers, P. C.; Gerbaux, P. Silver Ion Induced Folding of Alkylamines Observed by Ion Mobility Experiments. Int. J. Mass Spectrom. 2019, 435, 34- 41, 10.1016/j.ijms.2018.10.016
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 ( 15), 154104, 10.1063/1.3382344
Shoeib, T.; Cunje, A.; Hopkinson, A. C.; Siu, K. W. M. Gas-Phase Fragmentation of the Ag + ─Phenylalanine Complex: Cation─π Interactions and Radical Cation Formation. J. Am. Soc. Mass Spectrom. 2002, 13 ( 4), 408- 416, 10.1016/S1044-0305(02)00353-7
Duez, Q.; Josse, T.; Lemaur, V.; Chirot, F.; Choi, C. M.; Dubois, P.; Dugourd, P.; Cornil, J.; Gerbaux, P.; De Winter, J. Correlation between the Shape of the Ion Mobility Signals and the Stepwise Folding Process of Polylactide Ions: Stepwise Folding Process of Polylactide Ions. J. Mass Spectrom. 2017, 52 ( 3), 133- 138, 10.1002/jms.3915
Saintmont, F.; De Winter, J.; Chirot, F.; Halin, E.; Dugourd, P.; Brocorens, P.; Gerbaux, P. How Spherical Are Gaseous Low Charged Dendrimer Ions: A Molecular Dynamics/Ion Mobility Study?. J. Am. Soc. Mass Spectrom. 2020, 31 ( 8), 1673- 1683, 10.1021/jasms.0c00113
Weber, P.; Hoyas, S.; Halin, É.; Coulembier, O.; De Winter, J.; Cornil, J.; Gerbaux, P. On the Conformation of Anionic Peptoids in the Gas Phase. Biomacromolecules 2022, 23 ( 3), 1138- 1147, 10.1021/acs.biomac.1c01442
Hoyas, S.; Halin, E.; Lemaur, V.; De Winter, J.; Gerbaux, P.; Cornil, J. Helicity of Peptoid Ions in the Gas Phase. Biomacromolecules 2020, 21 ( 2), 903- 909, 10.1021/acs.biomac.9b01567
Hoyas, S.; Weber, P.; Halin, E.; Coulembier, O.; De Winter, J.; Cornil, J.; Gerbaux, P. Helical Peptoid Ions in the Gas Phase: Thwarting the Charge Solvation Effect by H-Bond Compensation. Biomacromolecules 2021, 22 ( 8), 3543- 3551, 10.1021/acs.biomac.1c00623
Giles, K.; Williams, J. P.; Campuzano, I. Enhancements in Travelling Wave Ion Mobility Resolution. Rapid Commun. Mass Spectrom. 2011, 25 ( 11), 1559- 1566, 10.1002/rcm.5013
Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Ion Mobility-Mass Spectrometry Analysis of Large Protein Complexes. Nat. Protoc 2008, 3 ( 7), 1139- 1152, 10.1038/nprot.2008.78
Duez, Q.; Hoyas, S.; Josse, T.; Cornil, J.; Gerbaux, P.; De Winter, J. Gas-phase Structure of Polymer Ions: Tying Together Theoretical Approaches and Ion Mobility Spectrometry. Mass Spectrom. Rev. 2023, 42 ( 4), 1129- 1151, 10.1002/mas.21745
Lee, B.; Richards, F. M. The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55 ( 3), 379 10.1016/0022-2836(71)90324-X
Mahadevi, A. S.; Sastry, G. N. Cation−π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science. Chem. Rev. 2013, 113 ( 3), 2100- 2138, 10.1021/cr300222d