G. Brinkmann et al., House of graphs: A database of interesting graphs, Discrete Appl. Math. 161 (2013), no. 1-2, 311–314. Available at http://hog.grinvin.org/
G. Brinkmann and J. Goedgebeur, Homepage of triangle Ramsey, available at http://caagt.ugent.be/triangleramsey/
G. Brinkmann, J. Goedgebeur, and J. C. Schlage-Puchta, Ramsey numbers R(K3,G) for graphs of order 10, Electron. J. Combin. 19 (2012), no. 4, 23.
G. Brinkmann and M. Meringer, The smallest 4-regular 4-chromatic graphs with girth 5, Graph Theory Notes NY 32 (1997), 40–41.
R. L. Brooks, On colouring the nodes of a network, Mathematical proceedings of the Cambridge Philosophical Society, vol. 37. Cambridge: Cambridge University, 1941, pp. 194–197.
V. Chvátal, The smallest triangle-free 4-chromatic 4-regular graph, J. Combin. Theory 9 (1970), no. 1, 93–94.
V. Chvátal, The minimality of the Mycielski graph, Graphs and combinatorics, Springer, Berlin and Heidelberg, 1974, 243–246.
L. Droogendijk, A triangle-free 6-chromatic graph with 44 vertices, 2015, available at https://math.stackexchange.com/questions/1561029/a-triangle-free-6-chromatic-graph-with-44-vertices
G. Exoo and J. Goedgebeur, Bounds for the smallest k-chromatic graphs of given girth, Discrete Math. Theoret. Comput. Sci. 21 (2019), no. 3, 16.
J. Goedgebeur and S. P. Radziszowski, New computational upper bounds for Ramsey numbers R(3,k), Electron. J. Combin. 20 (2013), no. 1, 16.
J. Goedgebeur and O. Schaudt, Exhaustive generation of k-critical H-free graphs, J. Graph Theory 87 (2018), no. 2, 188–207.
C. M. Grinstead, M. Katinsky, and D. Van Stone, On minimal triangle-free 5-chromatic graphs, J. Combin. Math. Combin. Comput. 6 (1989), 189.
B. Grünbaum, A problem in graph coloring, Amer. Math. Monthly 77 (1970), no. 10, 1088–1092.
T. Jensen and G. F. Royle, Small graphs with chromatic number 5: A computer search, J. Graph Theory 19 (1995), no. 1, 107–116.
T. Jensen and B. Toft, Graph coloring problems, A Wiley Interscience Publication, John Wiley & Sons, New York, 1995.
A. V. Kostochka, A modification of a Catalinas algorithm (in Russian), Methods Programs Solutions Optim. Probl. Graphs Netw. 2 (1982), 75–79.
B. D. McKay, Nauty user's guide (Version 2.6), Technical Report TR-CS-90-02, Department of Computer Science, Australian National University, The latest version of the software is available at http://cs.anu.edu.au/bdm/nauty
B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94–112.
J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955), 161–162.
B. Reed, ω,Δ, and χ, J. Graph Theory 27 (1998), no. 4, 177–212.
G. F. Royle, The smallest 4-chromatic graphs of girth 5, 2015, available at https://mathoverflow.net/questions/193716/what-is-the-smallest-4-chromatic-graph-of-girth-5
B. Toft, 75 graph-colouring problems, Privately circulated booklet, 1988.
X. Xu, M. Liang, and S. P. Radziszowski, Chromatic vertex Folkman numbers, 2016, arXiv preprint arXiv:1612.08136.