[en] Agroecosystems are often impoverished ecosystems, but they can host diverse communities of insects which provide ecosystem services. Specifically, crops may benefit from insect pollinators that increase their quantity and quality of yields. Basic knowledge is still needed regarding the identity, diversity, abundance, and ecology of insect pollinators in many parts of the world, especially in low and middle-income countries. In this study we investigate the potential of agroecosystems and crops in Morocco to host a high diversity of insect pollinators. We sampled insects in four eco-climatic regions encompassing a total of 22 crops for 2 years (2018–2019). After describing the general pattern of diversity and abundance of insect pollinators, we focused our comparative analyses on bees as they are known to be the most efficient and abundant group of insect pollinators. We recorded a total of 53,361 insect pollinators in all agroecosystems among which 37,091 were visiting crop flowers. Bees were by far the most abundant group visiting crops. Honeybees represented 49% of crop visitors followed by wild bees representing 33% of relative abundance. Three genera (Lasioglossum, Andrena, and Xylocopa) represented 53% of the total abundance of wild bees visiting crops. We identified a total of 213 species visiting crops (22% of national wild bee species richness). A comparison of the abundance, species richness, and community composition of wild bees visiting the same crops showed significant inter-regional differences for zucchini, faba bean, and eggplant. This study highlights the high diversity of pollinators in Moroccan agroecosystems and represents an important step toward exploring the Moroccan pollinator fauna. It provides basic information for future studies on pollinator conservation and pollination services.
Disciplines :
Agriculture & agronomy Zoology
Author, co-author :
El Abdouni, Insafe; Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium ; International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
Lhomme, Patrick ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
Christmann, Stefanie; International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
Dorchin, Achik ; Université de Mons - UMONS ; The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
Sentil, Ahlam ; Université de Mons - UMONS ; International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
Pauly, Alain; Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Hamroud, Laila ; Université de Mons - UMONS ; International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
Ihsane, Oumayma; Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium ; International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
Reverte saiz, Sara ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Patiny, Sebastien; Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
Wood, Thomas J.; Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
Bencharki, Youssef ; Université de Mons - UMONS ; International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
DFG - Deutsche Forschungsgemeinschaft F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
Funding number :
3094785
Funding text :
This work was part of an ICARDA project funded by the German Federal Ministry for the Environment, Nature Protection and Nuclear Safety (BMU) within the International Climate Initiative (IKI). It was also partly supported by the “Research Foundation of Flanders (FWO)” and the “Fonds de la Recherche Scientifique (FNRS) under EOS Project CLIPS (no. 3094785)”. The publication was supported by the Institute for bioscience, Belgium.
Abrol D. P. Gorka A. K. Ansari M. J. Al-Ghamdi A. Al-Kahtani S. (2019). Impact of insect pollinators on yield and fruit quality of strawberry. Saudi J. Biol. Sci. 26 524–530. 10.1016/j.sjbs.2017.08.003 30899167
Aizen M. A. Garibaldi L. A. Cunningham S. A. Klein A. M. (2008). Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Curr. Biol. 18 1572–1575. 10.1016/j.cub.2008.08.066 18926704
Ali M. Sajjad A. Farooqi M. A. Bashir M. A. Aslam M. N. Nafees M. et al. (2020). Assessing indigenous and local knowledge of farmers about pollination services in cucurbit agro-ecosystem of Punjab. Pakistan Saudi J. Biol. Sci. 27 189–194. 10.1016/j.sjbs.2019.07.001 31889835
Anougmar S. (2021). Economics Of Pollination In Drylands: Farmers’ And Consumers’ Perspectives In A Middle-Income Country.
Aouar-sadli M. Louadi K. Doumandji S. (2008). Pollination of the broad bean (Vicia faba L.var. major) (Fabaceae) by wild bees and honey bees (Hymenoptera: apoidea) and its impact on the seed production in the Tizi-Ouzou area (Algeria). Afr. J. Agric. Res. 3 266–272.
Balfour N. J. Ollerton J. Castellanos M. C. Ratnieks F. L. W. (2018). British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biol. Conserv. 222 278–283. 10.1016/j.biocon.2018.04.028
Bashir M. A. Alvi A. M. Khan K. A. Rehmani M. I. A. Ansari M. J. Atta S. et al. (2018). Role of pollination in yield and physicochemical properties of tomatoes (Lycopersicon esculentum). Saudi J. Biol. Sci. 25 1291–1297. 10.1016/j.sjbs.2017.10.006 30505172
Bates D. Mächler M. Bolker B. M. Walker S. C. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 1–48
Blaauw B. R. Isaacs R. (2014). Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51 890–898. 10.1111/1365-2664.12257
Bladt J. Larsen F. W. Rahbek C. (2008). Does taxonomic diversity in indicator groups influence their effectiveness in identifying priority areas for species conservation? Anim. Conserv. 11 546–554. 10.1111/j.1469-1795.2008.00211.x
Borror D. J. White R. E. (1991). Les Insectes De L’amérique Du Nord (Au Nord Du Mexique). Canada: Broquet Inc.
Chatterjee A. Chatterjee S. Smith B. Cresswell J. E. Basu P. (2020). Predicted thresholds for natural vegetation cover to safeguard pollinator services in agricultural landscapes. Agric. Ecosyst. Environ. 290:106785. 10.1016/j.agee.2019.106785
Christmann S. (2022). Regard and protect ground-nesting pollinators as part of soil biodiversity. Ecol. Appl. 32:e2564. 10.1002/eap.2564 35138690
Christmann S. Aw-Hassan A. Güler Y. Sarisu H. C. Bernard M. Smaili M. C. et al. (2022). Two enabling factors for farmer-driven pollinator protection in low- and middle-income countries. Int. J. Agric. Sustain. 20 54–67. 10.1080/14735903.2021.1916254
Christmann S. Aw-Hassan A. Rajabov T. Khamraev A. S. Tsivelikas A. (2017). Farming with alternative pollinators increases yields and incomes of cucumber and sour cherry. Agron. Sustain. Dev. 37:24. 10.1007/s13593-017-0433-y
Christmann S. Aw-Hassan A. A. (2012). Farming with alternative pollinators (FAP)— An overlooked win-win-strategy for climate change adaptation. Agric. Ecosyst. Environ. 161 161–164. 10.1016/j.agee.2012.07.030
Christmann S. Bencharki Y. Anougmar S. Rasmont P. Smaili M. C. Tsivelikas A. et al. (2021). Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture. Sci. Rep. 11 1–11. 10.1038/s41598-021-97695-5 34521929
Cunningham S. A. Le Feuvre D. (2013). Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. F Crop. Res. 149 269–275. 10.1016/j.fcr.2013.05.019
Dicks L. V. Breeze T. D. Ngo H. T. Senapathi D. An J. Aizen M. A. et al. (2021). A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5 1453–1461. 10.1038/s41559-021-01534-9 34400826
Eeraerts M. Vanderhaegen R. Smagghe G. Meeus I. (2020). Pollination efficiency and foraging behaviour of honey bees and non-Apis bees to sweet cherry. Agric. For. Entomol. 22 75–82. 10.1111/afe.12363
Fijen T. P. M. Scheper J. A. Vogel C. Ruijven J. V. Kleijn D. (2020). Insect pollination is the weakest link in the production of a hybrid seed crop. Agric. Ecosyst. Environ. 290:106743. 10.1016/j.agee.2019.106743
Garibaldi L. A. Aizen M. A. Klein A. M. Cunningham S. A. Harder L. D. (2011). Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. U. S. A. 108 5909–5914. 10.1073/pnas.1012431108 21422295
Garibaldi L. A. Andersson G. K. S. Requier F. Fijen T. P. M. Hipólito J. Kleijn D. et al. (2018). Complementarity and synergisms among ecosystem services supporting crop yield. Glob. Food Sec. 17 38–47. 10.1016/j.gfs.2018.03.006
Garibaldi L. A. Bartomeus I. Bommarco R. Klein A. M. Cunningham S. A. Aizen M. A. et al. (2015). Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 52 1436–1444. 10.1111/1365-2664.12530
Garratt M. P. D. Breeze T. D. Jenner N. Polce C. Biesmeijer J. C. Potts S. G. (2014a). Avoiding a bad apple: insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 184 34–40. 10.1016/j.agee.2013.10.032 24748698
Garratt M. P. D. Coston D. J. Truslove C. L. Lappage M. G. Polce C. Dean R. et al. (2014b). The identity of crop pollinators helps target conservation for improved ecosystem services. Biol. Conserv. 169 128–135. 10.1016/j.biocon.2013.11.001 24696525
Geeraert L. Aerts R. Berecha G. Daba G. De Fruyt N. D’hollander J. et al. (2020). Effects of landscape composition on bee communities and coffee pollination in Coffea arabica production forests in southwestern Ethiopia. Agric. Ecosyst. Environ. 288 106706–106717. 10.1016/j.agee.2019.106706
Gemmill-herren B. Ochieng A. O. (2008). Role of native bees and natural habitats in eggplant (Solanum melongena) pollination in Kenya. Agric. Ecosyst. Environ. 127 31–36. 10.1016/j.agee.2008.02.002
Holzschuh A. Dudenhöffer J. H. Tscharntke T. (2012). Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol. Conserv. 153 101–107. 10.1016/j.biocon.2012.04.032
Hothorn T. Bretz F. Westfall P. (2008). Simultaneous inference in general parametric models. Biom. J. 50 346–363. 10.1002/bimj.200810425 18481363
Hünicken P. L. Morales C. L. Aizen M. A. Anderson G. K. S. García N. Garibaldi L. A. (2021). Insect pollination enhances yield stability in two pollinator-dependent crops. Agric. Ecosyst. Environ. 320:107573. 10.1016/j.agee.2021.107573
Hutchinson L. A. Oliver T. H. Breeze T. D. Bailes E. J. Brünjes L. Campbell A. J. et al. (2021). Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agric. Ecosyst. Environ. 315:107447. 10.1016/j.agee.2021.107447
Jayasinghe U. J. M. S. R. Silva T. H. S. E. Karunaratne W. A. I. P. (2017). Buzzing Wild Bee Visits Enhance Seed Set in Eggplant, Solanum melongena. Hindawi 2017 1–7. 10.1155/2017/4624062
Kennedy C. M. Lonsdorf E. Neel M. C. Williams N. M. Ricketts T. H. Winfree R. et al. (2013). A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16 584–599. 10.1111/ele.12082 23489285
Kleijn D. Winfree R. Bartomeus I. Carvalheiro L. G. Henry M. Isaacs R. et al. (2015). Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6 1–8. 10.1038/ncomms8414 26079893
Lhomme P. Michez D. Christmann S. Scheuchl E. El Abdouni I. Hamroud L. et al. (2020). The wild bees (Hymenoptera: apoidea) of Morocco. Zootaxa 4892:zootaxa.4892.1.1. 10.11646/zootaxa.4892.1.1 33311101
Losey J. E. Vaughan M. (2006). The Economic Value of Ecological Services Provided by Insects. Bioscience 56:311.
MacInnis G. Forrest J. R. K. (2019). Pollination by wild bees yields larger strawberries than pollination by honey bees. J. Appl. Ecol. 56 824–832. 10.1111/1365-2664.13344
Marzinzig B. Brünjes L. Biagioni S. Behling H. Link W. Westphal C. (2018). Bee pollinators of faba bean (Vicia faba L.) differ in their foraging behaviour and pollination efficiency. Agric. Ecosyst. Environ. 264 24–33. 10.1016/j.agee.2018.05.003
Michener C. D. (1979). Biogeography of bees. Ann. Missouri Bot. Gard. 66 277–347. 10.1016/j.ympev.2008.07.005 18675365
Michener C. D. (2007). The Bees Of The World. 2nd ed. Baltimore: JHU Press.
Michez D. Rasmont P. Terzo M. Vereecken N. J. (2019). Bees Of Europe. France: NAP Editions.
Ministry of Agriculture, Fisheries, Rural Development, Water, and Forests (2020). Consolidation et archivage des statistiques produites par le ministère (superficie, Production, Effectifs d’élevage, …). Warsaw: Ministry of Agriculture, Fisheries, Rural Development, Water, and Forests.
Mokhtari N. Mrabet R. Lebailly P. Bock L. (2013). Spatialisation des bioclimats, de l’aridité et des étages de végétation du Maroc. Rev. Marocaine Des Sci. Agron. Vét. 2 50–66.
Morandin L. A. Kremen C. (2013). Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23 829–839. 10.1890/12-1051.1
Muñoz A. E. Plantegenest M. Amouroux P. Zaviezo T. (2021). Native flower strips increase visitation by non-bee insects to avocado flowers and promote yield. Basic Appl. Ecol. 56 369–378. 10.1016/j.baae.2021.08.015
Oertli S. Müller A. Dorn S. (2005). Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: apoidea): apiformes. Eur. J. Entomol. 102 53–63. 10.14411/eje.2005.008
Ollerton J. Winfree R. Tarrant S. (2011). How many flowering plants are pollinated by animals? Oikos 120 321–326. 10.1111/j.1600-0706.2010.18644.x
Osorio-canadas S. Arnan X. Torné-Noguera A. Molowny R. Bosch J. Gómez J. M. (2016). Body size phenology in a regional bee fauna: a temporal extension of Bergmann’s rule. Ecol. Lett. 19 1395–1402. 10.1111/ele.12687 27758035
Patiny S. Michez D. (2007). Biogeography of bees (Hymenoptera, Apoidea) in Sahara and the Arabian deserts. Insect Syst. Evol. 38 19–34. 10.1163/187631207788784012
Patiny S. Michez D. Kuhlmann M. Pauly A. Barbier Y. (2009). Factors limiting the species richness of bees in Saharan Africa. Bull. Entomol. Res. 99 337–346. 10.1017/S0007485308006433 19063760
Popic T. J. Davila Y. C. Wardle G. M. (2013). Evaluation of Common Methods for Sampling Invertebrate Pollinator Assemblages: net Sampling Out-Perform Pan Traps. PLoS One 8:e66665. 10.1371/journal.pone.0066665 23799127
Potts S. G. Imperatriz-Fonseca V. Ngo H. T. Aizen M. A. Biesmeijer J. C. Breeze T. D. et al. (2016). Safeguarding pollinators and their values to human well-being. Nature 540 220–229. 10.1038/nature20588 27894123
Powney G. D. Carvell C. Edwards M. Morris R. K. A. Roy H. E. Woodcock B. A. et al. (2019). Widespread losses of pollinating insects in Britain. Nat. Commun. 10:1018. 10.1038/s41467-019-08974-9 30914632
Rader R. Bartomeus I. Garibaldi L. A. Garratt M. P. D. Howlett B. G. Winfree R. et al. (2016). Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U. S. A. 113 146–151. 10.1073/pnas.1517092112 26621730
Raderschall C. A. Bommarco R. Lindström S. A. M. Lundin O. (2021). Landscape crop diversity and semi-natural habitat affect crop pollinators, pollination benefit and yield. Agric. Ecosyst. Environ. 306:107189. 10.1016/j.agee.2020.107189
Rankou H. Culham A. Jury S. L. Christenhusz M. J. M. (2013). The endemic flora of Morocco. Phytotaxa 78 1–69. 10.11646/phytotaxa.78.1.1
Rankou H. Culham A. Sghir Taleb M. Ouhammou A. Martin G. Jury S. L. (2015). Conservation assessments and red listing of the endemic moroccan flora (monocotyledons). Bot. J. Linn. Soc. 177 504–575. 10.1111/boj.12258
Reilly J. R. Artz D. R. Biddinger D. Bobiwash K. Boyle N. K. Brittain C. et al. (2020). Crop production in the USA is frequently limited by a lack of pollinators: pollination limitation in US crops. Proc. R. Soc. B Biol. Sci. 287 2–9. 10.1098/rspb.2020.0922rspb20200922
Ricketts T. H. Regetz J. Steffan-Dewenter I. Cunningham S. A. Kremen C. Bogdanski A. et al. (2008). Landscape effects on crop pollination services: are there general patterns? Ecol. Lett. 11 499–515. 10.1111/j.1461-0248.2008.01157.x 18294214
Sabbahi R. (2021). Economic value of insect pollination of major crops in Morocco. Int. J. Trop. Insect Sci. 42 1275–1284.
Samnegård U. Hambäck P. A. Eardley C. Nemomissa S. Hylander K. (2015). Turnover in bee species composition and functional trait distributions between seasons in a tropical agricultural landscape. Agric. Ecosyst. Environ. 211 185–194. 10.1016/j.agee.2015.06.010
Scheper J. Holzschuh A. Kuussaari M. Potts S. G. Rundlof M. Smith H. G. et al. (2013). Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss – a. Ecol. Lett. 16 912–920. 10.1111/ele.12128 23714393
Sentil A. Lhomme P. Michez D. Reverté S. Rasmont P. Christmann S. (2021). “Farming with Alternative Pollinators” approach increases pollinator abundance and diversity in faba bean fields. J. Insect Conserv. 26, 401–414
Sentil A. Wood T. J. Lhomme P. Hamroud L. El Abdouni I. Ihsane O. et al. (2022). Impact of the “Farming With Alternative Pollinators” Approach on Crop Pollinator Pollen Diet. Front. Ecol. Evol. 10:824474. 10.3389/fevo.2022.824474
Shebl M. A. Farag M. (2015). Bee diversity (Hymenoptera: apoidea) visiting Broad Bean (Vicia faba L.) flowers in Egypt. Zool. Middle East 61 256–263. 10.1080/09397140.2015.1069245
Shuler R. E. Roulston T. H. Farris G. E. (2005). Farming practices influence wild pollinator populations on squash and pumpkin. J. Econ. Entomol. 98 790–795. 10.1603/0022-0493-98.3.790 16022307
Sutter L. Jeanneret P. Bartual A. M. Bocci G. Albrecht M. (2017). Enhancing plant diversity in agricultural landscapes promotes both rare bees and dominant crop-pollinating bees through complementary increase in key floral resources. J. Appl. Ecol. 54 1856–1864. 10.1111/1365-2664.12907
Tarakini G. Chemura A. Musundire R. (2020). Farmers’ Knowledge and Attitudes Toward Pollination and Bees in a Maize-Producing Region of Zimbabwe: implications for Pollinator Conservation. Trop. Conserv. Sci. 13 1–13. 10.1177/1940082920918534
Temesgen T. Ayana M. Bedadi B. (2018). Evaluating the Effects of Deficit Irrigation on Yield and Water Productivity of Furrow Irrigated Onion (Allium cepa L.) in Ambo, Western Ethiopia. Irrig. Drain. Syst. Eng 07 1–6. 10.4172/2168-9768.1000203
Toni H. C. Djossa B. A. Ayenan M. A. T. Teka O. (2020). Tomato (Solanum lycopersicum) pollinators and their effect on fruit set and quality. J. Hortic. Sci. Biotechnol. 96 1–13. 10.1080/14620316.2020.1773937
Tura L. E. Tolossa T. T. (2020). Effect of Irrigation Water Quality and Deficit Irrigation on Crop Yield and Water Use efficiency. Turk. J. Agric. Food Sci. Technol. 8 1201–1210.
Udayakumar A. Chaubey B. K. Timalapur M. (2021). Amegilla violacea (Lepeletier, 1841) (Anthophorini: apidae) – A native bee, an effective pollinator of eggplant (Solanum melongena). J. Apic. Res. 0 1–7. 10.1080/00218839.2020.1862393
Ullmann K. S. Meisnera M. H. Williams N. M. (2016). Impact of tillage on the crop pollinating, ground nesting bee, Peponapis pruinosa in California. Agr. Ecosyst. Environ. 232 240–246.
Weekers T. Marshall L. Leclercq N. Wood T. J. Cejas D. Drepper B. et al. (2022). Dominance of honey bees is negatively associated with wild bee diversity in commercial apple orchards regardless of management practices. Agric. Ecosyst. Environ. 323:107697. 10.1016/j.agee.2021.107697
Westphal C. Bommarco R. Carré G. Lamborn E. Morison N. Petanidou T. et al. (2008). Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78 653–671. 10.1890/07-1292.1
Yousaf M. Li J. Lu J. Ren T. Cong R. Fahad S. et al. (2017). Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 7 1–9. 10.1038/s41598-017-01412-0 28455510
Zattara E. E. Aizen M. A. (2021). Worldwide Occurrence Records Reflect a Global Decline in Bee Species Richness. One Earth 4 114–123. 10.1101/869784
Zhang C. Guanming S. Shen J. Hu R. F. (2015). Productivity effect and overuse of pesticide in crop production in China. J. Integr. Agric. 14 1903–1910. 10.1016/S2095-3119(15)61056-5