[en] Two-dimensional (2D) chirality has been actively studied in view of numerous applications of chiral surfaces such as in chiral resolutions and enantioselective catalysis. Here, we report on the expression and amplification of chirality in hybrid 2D metallosupramolecular networks formed by a nucleobase derivative. Self-assembly of a guanine derivative appended with a pyridyl node was studied at the solution-graphite interface in the presence and absence of coordinating metal ions. In the absence of coordinating metal ions, a monolayer that is representative of a racemic compound was obtained. This system underwent spontaneous resolution upon addition of a coordinating ion and led to the formation of a racemic conglomerate. The spontaneous resolution could also be achieved upon addition of a suitable guest molecule. The mirror symmetry observed in the formation of the metallosupramolecular networks could be broken via the use of an enantiopure solvent, which led to the formation of a globally homochiral surface.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Disciplines :
Chemistry
Author, co-author :
Cucinotta, Antonino; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Kahlfuss, Christophe; CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
Minoia, Andréa ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Eyley, Samuel ; Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
Zwaenepoel, Keanu; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Velpula, Gangamallaiah ; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Thielemans, Wim ; Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
Lazzaroni, Roberto ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Bulach, Véronique; CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
Hosseini, Mir Wais; CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
Mali, Kunal S ; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
De Feyter, Steven ; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Language :
English
Title :
Metal Ion and Guest-Mediated Spontaneous Resolution and Solvent-Induced Chiral Symmetry Breaking in Guanine-Based Metallosupramolecular Networks.
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Agentschap Innoveren en Ondernemen F?d?ration Wallonie-Bruxelles KU Leuven European Regional Development Fund Fonds Wetenschappelijk Onderzoek POM West-Vlaanderen Fonds De La Recherche Scientifique - FNRS
Funding text :
S.D.F. and K.S.M. gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO) and KU Leuven–Internal Funds (C14/19/079). A.C. acknowledges financial support through an FWO Fellowship (1159922N). This work was in part supported by FWO and FNRS under EOS-CHISUB (40007495). The modeling studies are supported by FNRS (CECI, under Grant 2.5020.11) and by Wallonie (ZENOBE Tier-1 facility, grant 1117545). W.T. and S.E. thank Research Foundation Flanders (grant G0A1219N), KU Leuven (grant C14/18/061), and the European Union’s European Fund for Regional Development, Flanders Innovation & Entrepreneurship, and the Province of West-Flanders (Accelerate3 project, Interreg Vlaanderen-Nederland program) for financial support. The authors also thank Prof. Yves Geerts (Université Libre de Bruxelles-ULB) for providing purified sample of lead phthalocyanine.S.D.F. and K.S.M. gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO) and KU Leuven-Internal Funds (C14/19/079). A.C. acknowledges financial support through an FWO Fellowship (1159922N). This work was in part supported by FWO and FNRS under EOS-CHISUB (40007495). The modeling studies are supported by FNRS (CECI, under Grant 2.5020.11) and by Wallonie (ZENOBE Tier-1 facility, grant 1117545). W.T. and S.E. thank Research Foundation Flanders (grant G0A1219N), KU Leuven (grant C14/18/061), and the European Union’s European Fund for Regional Development, Flanders Innovation & Entrepreneurship, and the Province of West-Flanders (Accelerate3 project, Interreg Vlaanderen-Nederland program) for financial support. The authors also thank Prof. Yves Geerts (Université Libre de Bruxelles-ULB) for providing purified sample of lead phthalocyanine.
Pilgrim, B. S.; Champness, N. R. Metal-Organic Frameworks and Metal-Organic Cages - A Perspective. ChemPlusChem 2020, 85, 1842- 1856, 10.1002/cplu.202000408
Wang, H.; Li, Y.; Li, N.; Filosa, A.; Li, X. Increasing the Size and Complexity of Discrete 2D Metallosupramolecules. Nat. Rev. Mater. 2021, 6, 145- 167, 10.1038/s41578-020-00257-w
Winter, A.; Schubert, U. S. Synthesis and Characterization of Metallo-Supramolecular Polymers. Chem. Soc. Rev. 2016, 45, 5311- 5357, 10.1039/C6CS00182C
Barth, J. V.; Costantini, G.; Kern, K. Engineering Atomic and Molecular Nanostructures at Surfaces. Nature 2005, 437, 671- 679, 10.1038/nature04166
Liu, J.; Abel, M.; Lin, N. On-Surface Synthesis: A New Route Realizing Single-Layer Conjugated Metal-Organic Structures. J. Phys. Chem. Lett. 2022, 13, 1356- 1365, 10.1021/acs.jpclett.1c04134
Griffin, S. L.; Champness, N. R. A Periodic Table of Metal-Organic Frameworks. Coord. Chem. Rev. 2020, 414, 213295 10.1016/j.ccr.2020.213295
Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673- 674, 10.1021/cr300014x
Chakraborty, G.; Park, I.-H.; Medishetty, R.; Vittal, J. J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751- 3891, 10.1021/acs.chemrev.0c01049
Wang, M.; Dong, R.; Feng, X. Two-Dimensional Conjugated Metal-Organic Frameworks (2D C-MOFs): Chemistry and Function for Moftronics. Chem. Soc. Rev. 2021, 50, 2764- 2793, 10.1039/D0CS01160F
Kalenius, E.; Groessl, M.; Rissanen, K. Ion Mobility-Mass Spectrometry of Supramolecular Complexes and Assemblies. Nat. Rev. Chem. 2019, 3, 4- 14, 10.1038/s41570-018-0062-2
Dou, J.-H.; Arguilla, M. Q.; Luo, Y.; Li, J.; Zhang, W.; Sun, L.; Mancuso, J. L.; Yang, L.; Chen, T.; Parent, L. R. Atomically Precise Single-Crystal Structures of Electrically Conducting 2d Metal-Organic Frameworks. Nat. Mater. 2021, 20, 222- 228, 10.1038/s41563-020-00847-7
Zhang, Z.; Wang, H.; Wang, X.; Li, Y.; Song, B.; Bolarinwa, O.; Reese, R. A.; Zhang, T.; Wang, X.-Q.; Cai, J. Supersnowflakes: Stepwise Self-Assembly and Dynamic Exchange of Rhombus Star-Shaped Supramolecules. J. Am. Chem. Soc. 2017, 139, 8174- 8185, 10.1021/jacs.7b01326
Wang, J.; Zhao, H.; Chen, M.; Jiang, Z.; Wang, F.; Wang, G.; Li, K.; Zhang, Z.; Liu, D.; Jiang, Z.; Wang, P. Construction of Macromolecular Pinwheels Using Predesigned Metalloligands. J. Am. Chem. Soc. 2020, 142, 21691- 21701, 10.1021/jacs.0c08020
Wiktor, C.; Meledina, M.; Turner, S.; Lebedev, O. I.; Fischer, R. A. Transmission Electron Microscopy on Metal-Organic Frameworks - A Review. J. Mater. Chem. A 2017, 5, 14969- 14989, 10.1039/C7TA00194K
Zhu, Y.; Ciston, J.; Zheng, B.; Miao, X.; Czarnik, C.; Pan, Y.; Sougrat, R.; Lai, Z.; Hsiung, C.-E.; Yao, K. Unravelling Surface and Interfacial Structures of a Metal-Organic Framework by Transmission Electron Microscopy. Nat. Mater. 2017, 16, 532- 536, 10.1038/nmat4852
Geng, Y.-f.; Li, P.; Li, J.-z.; Zhang, X.-m.; Zeng, Q.-d.; Wang, C. Stm Probing the Supramolecular Coordination Chemistry on Solid Surface: Structure, Dynamic, and Reactivity. Coord. Chem. Rev. 2017, 337, 145- 177, 10.1016/j.ccr.2017.01.014
Dong, L.; Gao, Z. A.; Lin, N. Self-Assembly of Metal-Organic Coordination Structures on Surfaces. Prog. Surf. Sci. 2016, 91, 101- 135, 10.1016/j.progsurf.2016.08.001
Garah, M. E.; Ciesielski, A.; Marets, N.; Bulach, V.; Hosseini, M. W.; Samorì, P. Molecular Tectonics Based Nanopatterning of Interfaces with 2D Metal-Organic Frameworks (MOFs). Chem. Commun. 2014, 50, 12250- 12253, 10.1039/C4CC03622K
El Garah, M.; Marets, N.; Mauro, M.; Aliprandi, A.; Bonacchi, S.; De Cola, L.; Ciesielski, A.; Bulach, V.; Hosseini, M. W.; Samorì, P. Nanopatterning of Surfaces with Monometallic and Heterobimetallic 1D Coordination Polymers: A Molecular Tectonics Approach at the Solid/Liquid Interface. J. Am. Chem. Soc. 2015, 137, 8450- 8459, 10.1021/jacs.5b02283
Carvalho, M.-A.; Dekkiche, H.; Nagasaki, M.; Kikkawa, Y.; Ruppert, R. Coordination-Driven Construction of Porphyrin Nanoribbons at a Highly Oriented Pyrolytic Graphite (HOPG)/Liquid Interface. J. Am. Chem. Soc. 2019, 141, 10137- 10141, 10.1021/jacs.9b02145
Kikkawa, Y.; Nagasaki, M.; Tsuzuki, S.; Fouquet, T. N. J.; Nakamura, S.; Takenaka, Y.; Norikane, Y.; Hiratani, K. Well-Organised Two-Dimensional Self-Assembly Controlled by in Situ Formation of a Cu(II)-Coordinated Rufigallol Derivative: A Scanning Tunnelling Microscopy Study. Chem. Commun. 2022, 58, 1752- 1755, 10.1039/D1CC05991B
Li, S.-S.; Northrop, B. H.; Yuan, Q.-H.; Wan, L.-J.; Stang, P. J. Surface Confined Metallosupramolecular Architectures: Formation and Scanning Tunneling Microscopy Characterization. Acc. Chem. Res. 2009, 42, 249- 259, 10.1021/ar800117j
Shi, J.; Li, Y.; Jiang, X.; Yu, H.; Li, J.; Zhang, H.; Trainer, D. J.; Hla, S. W.; Wang, H.; Wang, M.; Li, X. Self-Assembly of Metallo-Supramolecules with Dissymmetrical Ligands and Characterization by Scanning Tunneling Microscopy. J. Am. Chem. Soc. 2021, 143, 1224- 1234, 10.1021/jacs.0c12508
Wang, L.; Song, B.; Li, Y.; Gong, L.; Jiang, X.; Wang, M.; Lu, S.; Hao, X.-Q.; Xia, Z.; Zhang, Y. Self-Assembly of Metallo-Supramolecules under Kinetic or Thermodynamic Control: Characterization of Positional Isomers Using Scanning Tunneling Spectroscopy. J. Am. Chem. Soc. 2020, 142, 9809- 9817, 10.1021/jacs.0c03459
Mishra, V.; Mir, S. H.; Singh, J. K.; Gopakumar, T. G. Rationally Designed Semiconducting 2d Surface-Confined Metal-Organic Network. ACS Appl. Mater. Interfaces 2020, 12, 51122- 51132, 10.1021/acsami.0c16270
Sakata, K.; Kashiyama, S.; Matsuo, G.; Uemura, S.; Kimizuka, N.; Kunitake, M. Growth of Two-Dimensional Metal-Organic Framework Nanosheet Crystals on Graphite Substrates by Thermal Equilibrium Treatment in Acetic Acid Vapor. ChemNanoMat 2015, 1, 259- 263, 10.1002/cnma.201500062
Kumar, A.; Banerjee, K.; Foster, A. S.; Liljeroth, P. Two-Dimensional Band Structure in Honeycomb Metal-Organic Frameworks. Nano Lett. 2018, 18, 5596- 5602, 10.1021/acs.nanolett.8b02062
Xu, Y.; Duan, J.-J.; Yi, Z.-Y.; Zhang, K.-X.; Chen, T.; Wang, D. Chirality of Molecular Nanostructures on Surfaces Via Molecular Assembly and Reaction: Manifestation and Control. Surf. Sci. Rep. 2021, 76, 100531 10.1016/j.surfrep.2021.100531
Elemans, J. A. A. W.; De Cat, I.; Xu, H.; De Feyter, S. Two-Dimensional Chirality at Liquid-Solid Interfaces. Chem. Soc. Rev. 2009, 38, 722- 736, 10.1039/b800403j
Dutta, S.; Gellman, A. J. Enantiomer Surface Chemistry: Conglomerate Versus Racemate Formation on Surfaces. Chem. Soc. Rev. 2017, 46, 7787- 7839, 10.1039/C7CS00555E
Yang, B.; Cao, N.; Ju, H.; Lin, H.; Li, Y.; Ding, H.; Ding, J.; Zhang, J.; Peng, C.; Zhang, H. Intermediate States Directed Chiral Transfer on a Silver Surface. J. Am. Chem. Soc. 2019, 141, 168- 174, 10.1021/jacs.8b05699
Messina, P.; Dmitriev, A.; Lin, N.; Spillmann, H.; Abel, M.; Barth, J. V.; Kern, K. Direct Observation of Chiral Metal-Organic Complexes Assembled on a Cu(100) Surface. J. Am. Chem. Soc. 2002, 124, 14000- 14001, 10.1021/ja028553s
Dmitriev, A.; Spillmann, H.; Lingenfelder, M.; Lin, N.; Barth, J. V.; Kern, K. Design of Extended Surface-Supported Chiral Metal-Organic Arrays Comprising Mononuclear Iron Centers. Langmuir 2004, 20, 4799- 4801, 10.1021/la049273o
Parschau, M.; Romer, S.; Ernst, K.-H. Induction of Homochirality in Achiral Enantiomorphous Monolayers. J. Am. Chem. Soc. 2004, 126, 15398- 15399, 10.1021/ja044136z
Tahara, K.; Yamaga, H.; Ghijsens, E.; Inukai, K.; Adisoejoso, J.; Blunt, M. O.; De Feyter, S.; Tobe, Y. Control and Induction of Surface-Confined Homochiral Porous Molecular Networks. Nat. Chem. 2011, 3, 714- 719, 10.1038/nchem.1111
Fasel, R.; Parschau, M.; Ernst, K.-H. Amplification of Chirality in Two-Dimensional Enantiomorphous Lattices. Nature 2006, 439, 449- 452, 10.1038/nature04419
Haq, S.; Liu, N.; Humblot, V.; Jansen, A. P.; Raval, R. Drastic Symmetry Breaking in Supramolecular Organization of Enantiomerically Unbalanced Monolayers at Surfaces. Nat. Chem. 2009, 1, 409- 414, 10.1038/nchem.295
Berg, A. M.; Patrick, D. L. Preparation of Chiral Surfaces from Achiral Molecules by Controlled Symmetry Breaking. Angew. Chem., Int. Ed. 2005, 44, 1821- 1823, 10.1002/anie.200461833
Katsonis, N.; Xu, H.; Haak, R. M.; Kudernac, T.; Tomović, Ž.; George, S.; Van der Auweraer, M.; Schenning, A. P. H. J.; Meijer, E. W.; Feringa, B. L.; De Feyter, S. Emerging Solvent-Induced Homochirality by the Confinement of Achiral Molecules against a Solid Surface. Angew. Chem., Int. Ed. 2008, 47, 4997- 5001, 10.1002/anie.200800255
Destoop, I.; Ghijsens, E.; Katayama, K.; Tahara, K.; Mali, K. S.; Tobe, Y.; De Feyter, S. Solvent-Induced Homochirality in Surface-Confined Low-Density Nanoporous Molecular Networks. J. Am. Chem. Soc. 2012, 134, 19568- 19571, 10.1021/ja309673t
Destoop, I.; Minoia, A.; Ivasenko, O.; Noguchi, A.; Tahara, K.; Tobe, Y.; Lazzaroni, R.; De Feyter, S. Transfer of Chiral Information from a Chiral Solvent to a Two-Dimensional Network. Faraday Discuss. 2017, 204, 215- 231, 10.1039/C7FD00103G
Hosseini, M. W. Molecular Tectonics: From Simple Tectons to Complex Molecular Networks. Acc. Chem. Res. 2005, 38, 313- 323, 10.1021/ar0401799
Hosseini, M. W. Self-Assembly and Generation of Complexity. Chem. Commun. 2005, 5825- 5829, 10.1039/b513586a
Davis, J. T.; Spada, G. P. Supramolecular Architectures Generated by Self-Assembly of Guanosine Derivatives. Chem. Soc. Rev. 2007, 36, 296- 313, 10.1039/B600282J
Phillips, K.; Dauter, Z.; Murchie, A. I. H.; Lilley, D. M. J.; Luisi, B. The Crystal Structure of a Parallel-Stranded Guanine Tetraplex at 0.95å Resolution. J. Mol. Biol. 1997, 273, 171- 182, 10.1006/jmbi.1997.1292
Ciesielski, A.; El Garah, M.; Masiero, S.; Samorì, P. Self-Assembly of Natural and Unnatural Nucleobases at Surfaces and Interfaces. Small 2016, 12, 83- 95, 10.1002/smll.201501017
Otero, R.; Schöck, M.; Molina, L. M.; Lægsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Guanine Quartet Networks Stabilized by Cooperative Hydrogen Bonds. Angew. Chem., Int. Ed. 2005, 44, 2270- 2275, 10.1002/anie.200461586
Carpanese, C.; Ferlay, S.; Kyritsakas, N.; Henry, M.; Hosseini, M. W. Molecular Tectonics: Design of 2-D Networks by Simultaneous Use of Charge-Assisted Hydrogen and Coordination Bonds. Chem. Commun. 2009, 6786- 6788, 10.1039/b908496g
Lackinger, M.; Griessl, S.; Heckl, W. M.; Hietschold, M.; Flynn, G. W. Self-Assembly of Trimesic Acid at the Liquid-Solid Interfacea Study of Solvent-Induced Polymorphism. Langmuir 2005, 21, 4984- 4988, 10.1021/la0467640
Seibel, J.; Parschau, M.; Ernst, K.-H. From Homochiral Clusters to Racemate Crystals: Viable Nuclei in 2D Chiral Crystallization. J. Am. Chem. Soc. 2015, 137, 7970- 7973, 10.1021/jacs.5b02262
Sessler, J. L.; Sathiosatham, M.; Doerr, K.; Lynch, V.; Abboud, K. A. A G-Quartet Formed in the Absence of a Templating Metal Cation: A New 8-(N,N-Dimethylaniline)Guanosine Derivative. Angew. Chem., Int. Ed. 2000, 39, 1300- 1303, 10.1002/(SICI)1521-3773(20000403)39:7<1300::AID-ANIE1300>3.0.CO;2-I
Vidal, F.; Delvigne, E.; Stepanow, S.; Lin, N.; Barth, J. V.; Kern, K. Chiral Phase Transition in Two-Dimensional Supramolecular Assemblies of Prochiral Molecules. J. Am. Chem. Soc. 2005, 127, 10101- 10106, 10.1021/ja0525049
Viedma, C.; Lennox, C.; Cuccia, L. A.; Cintas, P.; Ortiz, J. E. Pasteur Made Simple - Mechanochemical Transformation of Racemic Amino Acid Crystals into Racemic Conglomerate Crystals. Chem. Commun. 2020, 56, 4547- 4550, 10.1039/C9CC10047D
Furukawa, M.; Yamada, T.; Katano, S.; Kawai, M.; Ogasawara, H.; Nilsson, A. Geometrical Characterization of Adenine and Guanine on Cu(110) by NEXAFS, XPS, and DFT Calculation. Surf. Sci. 2007, 601, 5433- 5440, 10.1016/j.susc.2007.09.009
Poppenberg, J.; Richter, S.; Darlatt, E.; Traulsen, C. H. H.; Min, H.; Unger, W. E. S.; Schalley, C. A. Successive Coordination of Palladium(II)-Ions and Terpyridine-Ligands to a Pyridyl-Terminated Self-Assembled Monolayer on Gold. Surf. Sci. 2012, 606, 367- 377, 10.1016/j.susc.2011.10.020
Mukherjee, A.; Sanz-Matias, A.; Velpula, G.; Waghray, D.; Ivasenko, O.; Bilbao, N.; Harvey, J. N.; Mali, K. S.; De Feyter, S. Halogenated Building Blocks for 2D Crystal Engineering on Solid Surfaces: Lessons from Hydrogen Bonding. Chem. Sci. 2019, 10, 3881- 3891, 10.1039/C8SC04499F
Wallach, O. Zur Kenntniss Der Terpene Und Der Ätherischen Oele. Justus Liebigs Ann. Chem. 1895, 286, 90- 118, 10.1002/jlac.18952860105
Brock, C. P.; Schweizer, W. B.; Dunitz, J. D. On the Validity of Wallach’s Rule: On the Density and Stability of Racemic Crystals Compared with Their Chiral Counterparts. J. Am. Chem. Soc. 1991, 113, 9811- 9820, 10.1021/ja00026a015
Pérez-García, L.; Amabilino, D. B. Spontaneous Resolution under Supramolecular Control. Chem. Soc. Rev. 2002, 31, 342- 356, 10.1039/B201099M
Chen, T.; Li, S.-Y.; Wang, D.; Yao, M.; Wan, L.-J. Remote Chiral Communication in Coadsorber-Induced Enantioselective 2D Supramolecular Assembly at a Liquid/Solid Interface. Angew. Chem., Int. Ed. 2015, 54, 4309- 4314, 10.1002/anie.201410927